SWE- Camera Software - Computational Video Engineer

Apple
Cambridge
7 months ago
Applications closed

Related Jobs

View all jobs

Summary:
iPhone is the most popular camera in the world. The flawless integration of software andhardware has led to features like Portrait Mode and Cinematic Mode which deliver experiencesthat are magical. Our team works hard on products that ship to millions of people, and we arelooking for people who want to do the same.The Computational Video and Machine Learning team develops the camera pipelines andinnovative algorithms for Apple’s mobile devices, including the iPhone and iPad. Combininginnovative algorithms with optimized implementations, our team delivers the quality andfeatures which help to re-define mobile videography. If you’re passionate about inventing anddeveloping new algorithms to improve the iPhone camera experience, we would like to hearfrom you.
Key Qualifications:
• Strong GPU coding skills (OpenGL/OpenCL/Metal).• Extensive production programming experience (preferably Objective-C/C++).• Practical experience in developing algorithms for image or video processing.• Fundamental understanding of camera systems and sensors.• Experience with concurrent architectures.• Strong analytical and problem solving skills.• Excellent written and verbal communications.• Ability to work hands-on in multi-functional teams.
Description:
In this role, you will design and implement state-of-the-art computer vision algorithms that will enable new high-impact Apple products and features and run on millions of devices. You will leverage your extensive GPU programming experience (e.g. from game development) to optimize render and compute pipelines for real-time performance. You will work on cross-functional features and collaborate closely with many different teams across Apple. If this sounds like it could be of interest, we would love to hear from you!
Additional Requirements:
MacOS or iOS development experience would be a plus. Apple is an Equal Opportunity Employer that is committed to inclusion and diversity. We also take affirmative action to offer employment and advancement opportunities to all applicants, including minorities, women, protected veterans, and individuals with disabilities. Apple will not discriminate or retaliate against applicants who inquire about, disclose, or discuss their compensation or that of other applicants.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Ways AI Pros Stay Inspired: Boost Creativity with Side Projects, Hackathons & More

In the rapidly evolving world of Artificial Intelligence (AI), creativity and innovation are critical. AI professionals—whether data scientists, machine learning engineers, or research scientists—must constantly rejuvenate their thinking to solve complex challenges. But how exactly do these experts stay energised and creative in their work? The answer often lies in a combination of strategic habits, side projects, hackathons, Kaggle competitions, reading the latest research, and consciously stepping out of comfort zones. This article will explore why these activities are so valuable, as well as provide actionable tips for anyone looking to spark new ideas and enrich their AI career. Below, we’ll delve into tried-and-tested strategies that AI pros employ to drive innovation, foster creativity, and maintain an inspired outlook in an industry that can be both exhilarating and daunting. Whether you’re just starting your AI journey or you’re an experienced professional aiming to sharpen your skills, these insights will help you break out of ruts, discover fresh perspectives, and bring your boldest ideas to life.

Top 10 AI Career Myths Debunked: Key Facts for Aspiring Professionals

Artificial Intelligence (AI) is one of the most dynamic and rapidly growing sectors in technology today. The lure of AI-related roles continues to draw a diverse range of job seekers—from seasoned software engineers to recent graduates in fields such as mathematics, physics, or data science. Yet, despite AI’s growing prominence and accessibility, there remains a dizzying array of myths surrounding careers in this field. From ideas about requiring near-superhuman technical prowess to assumptions that machines themselves will replace these jobs, the stories we hear sometimes do more harm than good. In reality, the AI job market offers far more opportunities than the alarmist headlines and misconceptions might suggest. Here at ArtificialIntelligenceJobs.co.uk, we witness firsthand the myriad roles, backgrounds, and success stories that drive the industry forward. In this blog post, we aim to separate fact from fiction—taking the most pervasive myths about AI careers and debunking them with clear, evidence-based insights. Whether you are an established professional considering a career pivot into data science, or a student uncertain about whether AI is the right path, this article will help you gain a realistic perspective on what AI careers entail. Let’s uncover the truth behind the most common myths and discover the actual opportunities and realities you can expect in this vibrant sector.

Global vs. Local: Comparing the UK AI Job Market to International Landscapes

How to navigate salaries, opportunities, and work culture in AI across the UK, the US, Europe, and Asia Artificial Intelligence (AI) has evolved from a niche field of research to an integral component of modern industries—powering everything from chatbots and driverless cars to sophisticated data analytics in finance and healthcare. The job market for AI professionals is consequently booming, with thousands of new positions posted each month worldwide. In this blog post, we will explore how the UK’s AI job market compares to that of the United States, Europe, and Asia, delving into differences in job demand, salaries, and workplace culture. Additionally, we will provide insights for candidates considering remote or international opportunities. Whether you are a freshly qualified graduate in data science, an experienced machine learning engineer, or a professional from a parallel domain looking to transition into AI, understanding the global vs. local landscape can help you make an informed decision about your career trajectory. As the demand for artificial intelligence skills grows—and borders become more porous with hybrid and remote work—the possibilities for ambitious job-seekers are expanding exponentially. This article will offer a comprehensive look at the various regional markets, exploring how the UK fares in comparison to other major AI hubs. We’ll also suggest factors to consider when choosing where in the world to work, whether physically or remotely. By the end, you’ll have a clearer picture of the AI employment landscape, and you’ll be better prepared to carve out your own path.