National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Pricing & Revenue Data Scientist

Harnham
London
3 weeks ago
Applications closed

Related Jobs

View all jobs

Senior Pricing Optimisation Data Scientist

Senior Pricing Optimisation Data Scientist

Data Scientist - Price Optimisation

Senior Pricing Data Scientist

Senior Pricing Data Scientist

Price Optimisation Data Scientist

Senior Data Scientist - Optimisation (Contract)

Outside IR35 | £400-450 per day | 3-month initial term | Hybrid London (2-3 days on-site)

The brief

A global marketing-data organisation is upgrading the engine that matches millions of survey invitations to the right respondents. Your task: treat the matching pipeline as a full-scale optimisation problem and raise both accuracy and yield.

Core responsibilities

  • Model optimisation- refactor and improve existing matching/segmentation models; design objective functions that balance cost, speed and data quality.

  • Experimentation- set up offline metrics and online A/B tests; analyse uplift and iterate quickly.

  • Production delivery- build scalable pipelines in AWS SageMaker (moving to Azure ML); containerise code and hook into CI/CD.

  • Monitoring & tuning- track drift, response quality and spend; implement automated retraining triggers.

  • Collaboration- work with Data Engineering, Product and Ops teams to translate business constraints into mathematical formulations.

A typical day

  1. Morning stand-up: align on performance targets and new constraints.

  2. Data dive: explore panel behaviour in Python/SQL, craft new features.

  3. Modelling sprint: run hyper-parameter sweeps or explore heuristic/greedy and MIP/SAT approaches.

  4. Deployment: ship a model as a container, update an Airflow (or Azure Data Factory) job.

  5. Review: inspect dashboards, compare control vs. treatment, plan next experiment.

Tech stack

Python (pandas, NumPy, scikit-learn, PyTorch/TensorFlow)
SQL (Redshift, Snowflake or similar)
AWS SageMaker → Azure ML migration, with Docker, Git, Terraform, Airflow / ADF
Optional extras: Spark, Databricks, Kubernetes.

What you'll bring

  • 3-5+ years building optimisation or recommendation systems at scale.

  • Strong grasp of mathematical optimisation (e.g., linear/integer programming, meta-heuristics) as well as ML.

  • Hands-on cloud ML experience (AWS or Azure).

  • Proven track record turning prototypes into reliable production services.

  • Clear communication and documentation habits.

Desired Skills and Experience

Experience & skills checklist

3-5 + yrs optimisation/recommender work at production scale (dynamic pricing, yield, marketplace matching).

Mathematical optimisation know-how - LP/MIP, heuristics, constraint tuning, objective-function design.

Python toolbox: pandas, NumPy, scikit-learn, PyTorch/TensorFlow; clean, tested code.

Cloud ML: hands-on with AWS SageMaker plus exposure to Azure ML; Docker, Git, CI/CD, Terraform.

SQL mastery for heavy-duty data wrangling and feature engineering.

Experimentation chops - offline metrics, online A/B test design, uplift analysis.

Production mindset: containerise models, deploy via Airflow/ADF, monitor drift, automate retraining.

Soft skills: clear comms, concise docs, and a collaborative approach with DS, Eng & Product.

Bonus extras: Spark/Databricks, Kubernetes, big-data panel or ad-tech experience.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 AI Recruitment Agencies in the UK You Should Know (2025 Job‑Seeker Guide)

Generative‑AI hype has translated into real hiring: Lightcast recorded +57 % year‑on‑year growth in UK adverts mentioning “machine learning”, “LLM” or “gen‑AI” during Q1 2025. Yet supply still lags. Roughly 18,000 core AI professionals work in the UK, but monthly live vacancies hover around 1,400–1,600. That mismatch makes specialist recruiters invaluable—opening stealth vacancies, advising on salary bands and fast‑tracking interview loops. But many tech agencies sprinkle “AI” on their website without an active desk. To save you time, we vetted 50 + consultancies and kept only those with: A registered UK head office (verified via Companies House). A named AI/Machine‑Learning or Data practice.

AI Jobs Skills Radar 2026: Emerging Frameworks, Languages & Tools to Learn Now

As the UK’s AI sector accelerates towards a £1 trillion tech economy, the job landscape is rapidly evolving. Whether you’re an aspiring AI engineer, a machine learning specialist, or a data-driven software developer, staying ahead of the curve means more than just brushing up on Python. You’ll need to master a new generation of frameworks, languages, and tools shaping the future of artificial intelligence. Welcome to the AI Jobs Skills Radar 2026—your definitive guide to the emerging AI tech stack that employers will be looking for in the next 12–24 months. Updated annually for accuracy and relevance, this guide breaks down the top tools, frameworks, platforms, and programming languages powering the UK’s most in-demand AI careers.

How to Find Hidden AI Jobs in the UK Using Professional Bodies like BCS, IET & the Turing Society

Stop Scrolling Job Boards and Start Tapping the Real AI Market Every week a new headline announces millions of pounds flowing into artificial-intelligence research, defence initiatives, or health-tech pilots. Read the news and you could be forgiven for thinking that AI vacancies must be everywhere—just grab your laptop, open LinkedIn, and pick a role. Yet anyone who has hunted seriously for an AI job in the United Kingdom knows the truth is messier. A large percentage of worthwhile AI positions—especially specialist or senior posts—never appear on public boards. They emerge inside university–industry consortia, defence labs, NHS data-science teams, climate-tech start-ups, and venture studios. Most are filled through referral or conversation long before a recruiter drafts a formal advert. If you wait for a vacancy link, you are already at the back of the queue. The surest way to beat that dynamic is to embed yourself in the professional bodies and grassroots communities where the work is conceived. The UK has a dense network of such organisations: the Chartered Institute for IT (BCS); the Institution of Engineering and Technology (IET) with its Artificial Intelligence Technical Network; the Alan Turing Institute and its student-driven Turing Society; the Royal Statistical Society (RSS); the Institution of Mechanical Engineers (IMechE) and its Mechatronics, Informatics & Control Group; public-funding engines like UK Research and Innovation (UKRI); and an ecosystem of Slack channels and Meetup groups that trade genuine, timely intel. This article is a practical, step-by-step guide to using those networks. You will learn: Why professional bodies matter more than algorithmic job boards Exactly which special-interest groups (SIGs) and technical networks to join How to turn CPD events into informal interviews How to monitor grant databases so you hear about posts months before they exist Concrete scripts, portfolio tactics, and outreach rhythms that convert visibility into offers Follow the playbook and you move from passive applicant to insider—the colleague who hears about a role before it is written down.