Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Quantitative Researcher

Jane Street
London
1 year ago
Applications closed

Related Jobs

View all jobs

Quantitative Researcher (Machine Learning)

Quantitative Researcher (Machine Learning)

Machine Learning Engineer

Machine Learning Researcher

Postdoctoral Data Scientist Engineer for the Quantitative Neuroradiology Initiative

Postdoctoral Data Scientist Engineer for the Quantitative Neuroradiology Initiative

About the Position

As a Quantitative Research intern, you’ll work side by side with full-timers to learn how we identify market signals, analyse large datasets, build and test models, and create new trading strategies.

At Jane Street, we blur the lines between trading and research, fostering a fluid environment where teams work in a tight loop to solve complex problems. We don’t believe in “one-size-fits-all” modelling solutions; we are open to and excited about applying all different types of statistical and ML techniques, from linear models to deep learning, depending on what best fits a given problem.

Our advanced proprietary trading models are the backbone of our operation, enabling us to identify profitable trading opportunities across hundreds of thousands of financial products, in over 200 trading venues globally. We utilise petabytes of data, our computing cluster with hundreds of thousands of cores, and our growing GPU cluster containing thousands of A/H100s to develop trading strategies in adversarial markets that evolve every day.

During the programme you’ll focus on two projects, mentored closely by the key stakeholders who’ve worked on them. You may conduct a study of some new or existing dataset, build new tools that support the firm’s research, or consider big-picture questions that we’re still trying to figure out. The problems we work on rarely have clean, definitive answers — and they often require insights from colleagues across the firm with different areas of expertise.

You’ll gain a better understanding of the diverse array of research challenges we consider every day, learning how we think about dataset generation, time series analysis, feature engineering, and model building for financial datasets. Your day-to-day project work will be complemented by classes on the broader fundamentals of markets and trading, lunch seminars, and activities designed to help you understand the entire process of creating a new trading strategy, from initial exploration to finding and productionising a signal.

Most interns are current undergraduate or graduate students, but we also welcome applicants who have already graduated and are considering a new career in finance.

If you’d like to learn more, you can read about our and meet some of our .

About You

We don’t expect you to have a background in finance or any other specific field — we’re looking for smart, ambitious people who enjoy solving challenging problems. Most candidates will have experience with data science or machine learning, but ultimately, we’re more interested in how you think and learn than what you currently know. You should be:

  • Able to apply logical and mathematical thinking to all kinds of problems
  • Intellectually curious; eager to ask questions, admit mistakes, and learn new things
  • A strong programmer who’s comfortable with Python
  • An open-minded thinker and precise communicator who enjoys collaborating with colleagues from a wide range of backgrounds and areas of expertise
  • Research experience a plus
  • Fluent in English

If you're a recruiting agency and want to partner with us, please reach out to .

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.