Staff Machine Learning Engineer - Modeling

Second Renaissance
Cambridge
3 weeks ago
Applications closed

Related Jobs

View all jobs

Staff Machine Learning Engineer

Staff Machine Learning Engineer

Staff Machine Learning Engineer

Senior Machine Learning Engineer

Machine Learning Engineer (Applied AI) (100% Remote in EMEA)

Senior Staff Engineer (Machine Learning) - 45391

Our Mission

Our mission is to restore cell health and resilience through cell rejuvenation to reverse disease, injury, and the disabilities that can occur throughout life.

For more information, see our website at altoslabs.com.

Our Value

Our Single Altos Value: Everyone Owns Achieving Our Inspiring Mission.

Diversity at Altos

We believe that diverse perspectives are foundational to scientific innovation and inquiry. At Altos, exceptional scientists and industry leaders from around the world work together to advance a shared mission. Our intentional focus is on Belonging, so that all employees know that they are valued for their unique perspectives. We are all accountable for sustaining a diverse and inclusive environment.

What You Will Contribute To Altos

As a Machine Learning Engineer, you will play a prominent role in developing generative AI/ML models for multi-modal, multiscale biology. We are looking for a hands-on, senior level creative and collaborative person to join our multidisciplinary team of scientists and engineers focused on transforming how we treat aging and disease. The successful candidate will thrive in a fast-paced environment that emphasises teamwork, transparency, scientific excellence, originality, rigor, and integrity.

Responsibilities

- Partner with world-class scientists across Altos to help generate biological insights with the goal of developing novel therapies;

  • Design and implement large-scale machine learning algorithms and systems applied to biological datasets;
  • Train, evaluate, and optimize machine learning models at scale;
  • Communicate effectively with internal and external collaborators to meet ambitious research and development goals.

    Who You Are

    - Proven track record leveraging machine learning to solve real-world problems;
  • Expertise in one or more of the following: generative models, language models, computer vision, bayesian inference, causal reasoning & inference, transfer & multi-task learning, diffusion models, graph neural networks, active learning;
  • Experience writing production-quality code with modern machine learning frameworks such as PyTorch, TensorFlow, JAX, or similar;
  • Experience with multi-GPU and distributed training at scale;
  • A team player who thrives in collaborative environments and is committed to enabling colleagues to reach their full potential;
  • Growth mindset - the desire to constantly expand your skillset and knowledge. Keen to learn more about biology, computational science, and medicine;
  • Excitement about the Altos mission of restoring cell health and resilience to reverse disease, injury, and age-related disabilities.

    Minimum Qualifications

    - Masters or Ph.D. degree in a quantitative/computational field such as computer science, artificial intelligence, mathematics, statistics, physics, or computational biology, or equivalent experience;
  • Experience in developing machine learning models;
  • Very strong programming skills, including experience with Python and deep learning libraries such as PyTorch or JAX;
  • Experience in large-scale distributed optimization of machine learning models across multiple GPUs and nodes.

    Preferred Qualifications

    - Familiarity with biological data formats, concepts, and computational models;
  • Experience in cell health and rejuvenation-related research area;
  • Experience with identification and assessment of drug targets and/or therapeutic compounds;
  • Experience in the application of machine learning methods to biological data, including genomics, transcriptomics, epigenetics, proteomics, and imaging;
  • Track record in open-source software development, e.g., demonstrated by high-impact GitHub repository;
  • Track record of high-caliber scientific work, e.g., demonstrated through publications in peer-reviewed scientific journals or major ML conferences;
  • Experience with one lower level language (not limited to, but such as C++, Rust);
  • Experience with large scale data processing and database tools such as MapReduce, Dask, SQL, Hugging Face Datasets, TileDB, Ray.

    The salary range for Cambridge, UK:

    - Senior Machine Learning Engineer: £90,950 - £123,050
  • Staff Machine Learning Engineer: £113,900 - £154,100

    Exact compensation may vary based on skills, experience, and location.

    Before submitting your application:

    - Please click here to read the Altos Labs EU and UK Applicant Privacy Notice (bit.ly/eu_uk_privacy_notice)

    - This Privacy Notice is not a contract, express or implied and it does not set terms or conditions of employment.

    What We Want You To Know

    We are a culture of collaboration and scientific excellence, and we believe in the values of inclusion and belonging to inspire innovation.

    Altos Labs provides equal employment opportunities to all employees and applicants for employment and prohibits discrimination and harassment of any type without regard to race, color, religion, age, sex, national origin, disability status, genetics, protected veteran status, sexual orientation, gender identity or expression, or any other characteristic protected by federal, state or local laws.

    This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

    Altos currently requires all employees to be fully vaccinated against COVID-19, subject to legally required exemptions (e.g., due to a medical condition or sincerely-held religious belief).

    Thank you for your interest in Altos Labs where we strive for a culture of scientific excellence, learning, and belonging.
    #J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.