Staff Machine Learning Engineer, Simulation

Waymo
London
1 month ago
Create job alert

Waymo is an autonomous driving technology company with the mission to be the most trusted driver. Since its start as the Google Self-Driving Car Project in 2009, Waymo has focused on building the Waymo Driver—The World's Most Experienced Driver—to improve access to mobility while saving thousands of lives now lost to traffic crashes. The Waymo Driver powers Waymo One, a fully autonomous ride-hailing service, and can also be applied to a range of vehicle platforms and product use cases. The Waymo Driver has provided over one million rider-only trips, enabled by its experience autonomously driving tens of millions of miles on public roads and tens of billions in simulation across 13+ U.S. states.

The Simulator team builds state-of-the-art simulations of realistic environments for the testing and training of the Waymo driver. We use machine learning to model the real world, including realistic agents (vehicles, pedestrians, cyclists, motorcyclists etc.), roads, traffic control systems, and weather. To increase the fidelity and steerability of the simulations, we employ large foundation models, trained on our massive datasets that allow us to quickly setup and rollout multiple scenarios to subject our driver to.

We are planning to set up a team in London, UK to work with the teams in MTV and Oxford to build these foundation models out and to integrate them into several evaluation and training products. We are looking for research engineers to work on these exciting problems.

In this hybrid role, you will report to an Engineering Director.

You will:
  • Be part of a world-class research engineering team to grow the state-of-the-art of ultra-realistic AV simulations using foundation models.
  • Collaborate with teams in Waymo Oxford to use large models to improve simulation realism.
  • Design experiments that push the frontiers of AV simulations.
  • Develop metrics that measure the realism of simulated worlds.
  • Train and evaluate large models and integrate them into the simulator and its downstream applications.
  • Help hire outstanding research engineers from diverse backgrounds.
  • Be a part of a collaborative research engineering team that takes research ideas and productionizes them.
We prefer:
  • 5+ years experience in applied Deep Learning.
  • 5+ years coding and design skills.
  • Experience solving complex production problems using state-of-the-art ML techniques.
  • Experience taking research to production.
  • Expertise in Data Analysis or Data Science.

The expected base salary range for this full-time position is listed below. Actual starting pay will be based on job-related factors, including exact work location, experience, relevant training and education, and skill level. Waymo employees are also eligible to participate in Waymo’s discretionary annual bonus program, equity incentive plan, and generous Company benefits program, subject to eligibility requirements.

Salary Range:£145,000—£157,000 GBP

#J-18808-Ljbffr

Related Jobs

View all jobs

Staff Machine Learning Engineer Institute of Computation / 14 January 2025

Staff Machine Learning Engineer

Staff Data Scientist (FTC)

Principal Machine Learning Engineer - Chat

Principal Machine Learning Engineer - Personalisation United Kingdom

Principal Machine Learning Engineer - Chat

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.

AI Jobs in the Public Sector: MOD, NHS & Gov Digital Service Opportunities

Artificial intelligence (AI) has rapidly evolved from a niche field of computer science into a transformative force reshaping industries across the globe. From healthcare to finance and from education to defence, AI-driven tools and techniques are revolutionising how we approach problems, improve efficiency, and make data-driven decisions. Nowhere is this transformation more apparent than in the United Kingdom’s public sector. Key government entities, including the Ministry of Defence (MOD), the National Health Service (NHS), and the Government Digital Service (GDS), are increasingly incorporating AI into their operations. Consequently, AI jobs within these bodies are growing both in number and strategic importance. In this comprehensive blog post, we will explore the landscape of AI jobs across the UK public sector, with a close look at the MOD, the NHS, and the Government Digital Service. We will delve into the reasons these organisations are investing heavily in AI, the types of roles available, the essential skills and qualifications required, as well as the salary ranges one might expect. Whether you are a new graduate keen to make a meaningful impact through your technical skills or a seasoned professional looking for your next career move, the public sector offers a wealth of opportunities in AI. By the end of this article, you will have a clearer understanding of why AI is so crucial to the public sector’s success, which roles are in demand, and how you can tailor your application to stand out in a competitive and rewarding job market.