Senior or Principal FPGA/Firmware Engineer

Leonardo Careers
Luton
11 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist & ML Researcher — Hybrid, Clearance

Principal Data Scientist & Machine Learning Researcher

Senior Data Scientist SME & AI Architect

Senior Data Scientist SME & AI Architect

Principal Machine Learning Engineer

Principal Data Scientist


Job Description:

Would you like to deliver the complex Firmware that forms part of our self-protection systems installed on fast jet, UAV, land and naval platforms?

We have an exciting opportunity for an experienced FPGA/Firmware Engineer to join our growing Luton or Bristol based teams.

What you will do

As an FPGA/Firmware engineer will work with the support of experts in their field, using world-class facilities to deliver Firmware for complex digital systems that meet challenging future customer requirements. Your role may even take you across the UK or abroad for technical reviews.

What we need from you

What you really must have:

  • Design tools such as Xilinx, TCL, Verilog, System Verilog and UVM
  • FPGA architectures such as Xilinx 7. Xilinx UltraScale; Intel (Altera) or Microsemi (Actel).
  • Fast interfaces such as PCIe, Ethernet, and JESD is also required.
  • Auto-generated code using model driven engineering using Matlab and Simulink tools
  • Derivation of detailed Firmware requirements and architecture from system requirements
  • A structured approach to firmware design (RTCA DO-254 or similar)
  • Cryptography and anti-tamper techniques
  • Artificial Intelligence including machine learning and genetic algorithms
  • Electronics test methods and equipment
  • Good verbal and written communication skills
  • Working in mixed discipline teams...

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.