Shape the Future of AIJoin one of the UK's fastest-growing companies and become a Professional Development Expert in Artificial Intelligence.

View Roles

Senior Data Scientist

Wellcome Sanger Institute
Hinxton
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist - Consumer Lending

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Do you want to help us improve human health and understand life on Earth? Make your mark by shaping the future to enable or deliver life-changing science to solve some of humanity’s greatest challenges.

Senior Data Scientist

We seek a senior machine learning research scientist to join a collaborative project between the Wellcome Sanger Institute and Open Targets (targets ( This project aims to leverage datasets internally generated at the Sanger Institute and publicly available data from human cells to create foundational models for biology, enhancing our understanding of life's rules and improving health for all. You will work within an interdisciplinary team of life scientists and computer/ML scientists, with a shared objective of advancing biological research through these foundational models. This role will sit within the AI/ML Faculty group led by Dr. Mohammad Lotfollahi, and the successful candidates, across different seniority levels (senior and principal), will be responsible for delivering their portfolio of scientific research projects as part of the broader team strategy.

About the role

Your role will involve designing foundational models leveraging multi-modal readouts. This includes integrating and processing data from various sources to develop robust and versatile AI models. To achieve this, you will work with open-source software, proposing, developing, and maintaining new solutions to analyze and interpret large-scale single-cell datasets. We have access to unique data and are also in the position to generate data to train unique models. Additionally, we have substantial computational power and GPU resources to train large models efficiently.

Our teams are well-positioned to tackle this problem with experience in both generating and analyzing datasets, including millions of cells across multiple tissues and conditions (e.g., disease, healthy). This involves a detailed understanding of the training of large-scale ML models and a track record of undertaking large data-science projects.

You will be responsible for:

  • Independently managing and leading machine learningresearchprojects and writing outcomes in a scientific publication for submission to journals or machine learning conferences (ICLR, ICML, CVPR, etc).   
  • Collaborating with team members in proposing, developing, and evaluating new machine learning models that enable understanding single-cell data and its application in drug discovery.
  • Working with Ph.D. students and postdocs in collaborating teams on developing solutions for interdisciplinary scientific problems in biology as well asproviding supervision and training to junior members of the team.
  • Contributing to writing scientific papers on biotechnology and biology.
  • Distilling your developed solutions into open-source and easy-to-install packages with documentation that facilitates the usage of your solution for downstream users, including biologists and bioinformaticians.
  • Presenting your research and analysis pipelines to internal and external audiences.

About You:

You will be supported in your personal and professional development and have the opportunity to lead peer-reviewed publications around using genetics and genomics approaches to guide drug discovery and present them at national and international conferences.

Essential Skills

● Ph.D. or M.Sc. with equivalent research experience in a relevant quantitative discipline (e.g., Computer Science, Computational Biology, Genetics, Bioinformatics, Physics, Engineering, or Applied Statistics/Mathematics)

● Previous ML work experience in scientific/academic environment (RA/Internships are considered as work experience)

● Strong knowledge of Python, including core data science libraries such as Scikit-Learn, SciPy, TensorFlow, and PyTorch.

● Expertise in machine learning algorithms and frameworks, with experience in designing, training, and deploying ML models.

● Proficiency in handling and processing large datasets, including techniques for data cleaning, feature engineering, and data augmentation.

● Experience with high-performance computing environments, including the use of GPUs for training large-scale machine learning models.

● Experience in natural language processing (NLP) and training models based on transformer architectures, such as BERT and GPT.

● Familiarity with generative models such as diffusion models and flow matching.

● Knowledge of software development good practices and collaboration tools, including git-based version control, Python package management, and code reviews.

● Strong problem-solving skills with the ability to analyze complex data and derive actionable insights.

● Excellent communication skills, with the ability to explain complex machine learning algorithms and statistical methods to non-technical stakeholders.

  • Evidence of related work experience as a researcher in the area of Machine learning
  • Strong publication record, first author position ideal

In addition to the above technical skills, you will also have the following:

  • Ability to quickly understand scientific, technical, and process challenges and breakdown complex problems into actionable steps
  • Ability to work in a frequently changing environment with the capability to interpret management information to amend plans
  • Ability to prioritize, manage workload, and deliver agreed activities consistently on time
  • Demonstrate good networking, influencing and relationship building skills
  • Strategic thinking is the ability to see the ‘bigger picture'
  • Ability to build collaborative working relationships with internal and external stakeholders at all levels
  • Demonstrates inclusivity and respect for all

Relevant publication of the groups:

  • Lotfollahi, M., Naghipourfar, M., Luecken, M. D., Khajavi, M., Büttner, M., Wagenstetter, M., Avsec, Ž., Gayoso, A., Yosef, N., Interlandi, M. & Others. Mapping single-cell data to reference atlases by transfer learning.Nature Biotechnology1–10 .
  • Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell perturbation responses.Nature Methods16, 715–721 .
  • Lotfollahi, M., Rybakov, S., Hrovatin, K., Hediyeh-Zadeh, S., Talavera-López, C., Misharin, A. V. & Theis, F. J. Biologically informed deep learning to query gene programs in single cell atlases.Nature Cell Biology .

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 AI Recruitment Agencies in the UK You Should Know (2025 Job‑Seeker Guide)

Generative‑AI hype has translated into real hiring: Lightcast recorded +57 % year‑on‑year growth in UK adverts mentioning “machine learning”, “LLM” or “gen‑AI” during Q1 2025. Yet supply still lags. Roughly 18,000 core AI professionals work in the UK, but monthly live vacancies hover around 1,400–1,600. That mismatch makes specialist recruiters invaluable—opening stealth vacancies, advising on salary bands and fast‑tracking interview loops. But many tech agencies sprinkle “AI” on their website without an active desk. To save you time, we vetted 50 + consultancies and kept only those with: A registered UK head office (verified via Companies House). A named AI/Machine‑Learning or Data practice.

AI Jobs Skills Radar 2026: Emerging Frameworks, Languages & Tools to Learn Now

As the UK’s AI sector accelerates towards a £1 trillion tech economy, the job landscape is rapidly evolving. Whether you’re an aspiring AI engineer, a machine learning specialist, or a data-driven software developer, staying ahead of the curve means more than just brushing up on Python. You’ll need to master a new generation of frameworks, languages, and tools shaping the future of artificial intelligence. Welcome to the AI Jobs Skills Radar 2026—your definitive guide to the emerging AI tech stack that employers will be looking for in the next 12–24 months. Updated annually for accuracy and relevance, this guide breaks down the top tools, frameworks, platforms, and programming languages powering the UK’s most in-demand AI careers.

How to Find Hidden AI Jobs in the UK Using Professional Bodies like BCS, IET & the Turing Society

Stop Scrolling Job Boards and Start Tapping the Real AI Market Every week a new headline announces millions of pounds flowing into artificial-intelligence research, defence initiatives, or health-tech pilots. Read the news and you could be forgiven for thinking that AI vacancies must be everywhere—just grab your laptop, open LinkedIn, and pick a role. Yet anyone who has hunted seriously for an AI job in the United Kingdom knows the truth is messier. A large percentage of worthwhile AI positions—especially specialist or senior posts—never appear on public boards. They emerge inside university–industry consortia, defence labs, NHS data-science teams, climate-tech start-ups, and venture studios. Most are filled through referral or conversation long before a recruiter drafts a formal advert. If you wait for a vacancy link, you are already at the back of the queue. The surest way to beat that dynamic is to embed yourself in the professional bodies and grassroots communities where the work is conceived. The UK has a dense network of such organisations: the Chartered Institute for IT (BCS); the Institution of Engineering and Technology (IET) with its Artificial Intelligence Technical Network; the Alan Turing Institute and its student-driven Turing Society; the Royal Statistical Society (RSS); the Institution of Mechanical Engineers (IMechE) and its Mechatronics, Informatics & Control Group; public-funding engines like UK Research and Innovation (UKRI); and an ecosystem of Slack channels and Meetup groups that trade genuine, timely intel. This article is a practical, step-by-step guide to using those networks. You will learn: Why professional bodies matter more than algorithmic job boards Exactly which special-interest groups (SIGs) and technical networks to join How to turn CPD events into informal interviews How to monitor grant databases so you hear about posts months before they exist Concrete scripts, portfolio tactics, and outreach rhythms that convert visibility into offers Follow the playbook and you move from passive applicant to insider—the colleague who hears about a role before it is written down.