Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Machine Learning Engineer (Spain)

Remotestar
Cambridge
1 week ago
Create job alert
Overview

At RemoteStar, we're currently hiring for one of our client based in Spain.


9-month fixed-term contract | Hybrid (3 days/week onsite) | Location: Barcelona or Madrid


About client

Well-funded and fast-growing deep-tech company founded in 2019. We are the biggest Quantum Software company in the EU. They are also one of the 100 most promising companies in AI in the world (according to CB Insights, 2023) with 150+ employees and growing, fully multicultural and international.


They provide hyper-efficient software to companies seeking to gain an edge with quantum computing and artificial intelligence. Their main products, Singularity and CompactifAI, address critical needs across various industries.


Required Qualifications

  • Master’s, or Ph.D. in Computer Science, AI, Data Science, Physics, Math, or a related field. Or equivalent industry experience.
  • 4+ years of experience in data science, machine learning, or related roles, with demonstrated experience with NLP or LLMs.
  • In-depth knowledge of large foundational model architectures (language and multimodal models) and their lifecycle: training, fine-tuning, alignment, and evaluation.
  • Proficient in Python and data tooling ecosystems (Pandas, NumPy, Hugging Face Datasets & Transformers libraries).
  • Hands-on experience with text data collection from diverse sources: web scraping, APIs, proprietary corpora, etc.
  • Strong understanding of data quality metrics including bias detection, toxicity, and readability.
  • Experience working in large shared distributed computing environments, familiarity with relevant tools for hardware optimization (vLLM, TensorRT, NeMo, etc.).
  • Experience with version control (git), unit testing, and other fundamental aspects of software development.
  • Effective communication and interpersonal abilities.

Preferred Qualifications

  • Experience building or contributing to datasets used in LLM pretraining or supervised fine-tuning.
  • Experience building foundational LLMs from the ground up
  • Familiarity with alignment techniques (e.g., reinforcement learning, preference modeling, reward modeling).
  • Exposure to multilingual and low-resource language datasets.
  • Contributions to open-source datasets, tools, or publications in dataset-centric research.
  • Knowledge of ethical AI, data governance, privacy laws (e.g., GDPR), and responsible data use.
  • Familiarity with the software development lifecycle and agile methodologies

As a Senior LLM Engineer, you will

  • Design and implement strategies for creating, sourcing, and augmenting datasets tailored for LLM training and fine-tuning.
  • Develop scalable pipelines to collect, clean, filter, annotate, and validate large volumes of text data, ensuring quality, ethical compliance, etc.
  • Collaborate with ML engineers, researchers, and software engineers to achieve ambitious goals in the preparation of LLMs and complementary work (preparing datasets, model evaluation, model serving, etc.).
  • Develop and integrate new routines for modifying and enhancing LLMs, and extending their functionality.
  • Make effective use of distributed compute resources and clusters (GPU’s), identify opportunities for further optimization.
  • End-to-end preparation of compressed and specialized LLMs for use in production.
  • Keep up to date with research trends in LLM foundation models, dataset curation, LLM pretraining data, and benchmarking.
  • Contribute to building documentation, development standards, and a healthy shared code base.
  • Mentor other engineers and provide knowledge sharing of cutting-edge techniques.

We offer

  • Two unique bonuses: signing bonus at incorporation and retention bonus at contract completion.
  • Relocation package (if applicable).
  • Up to 9-month contract, ending on June 2026.
  • Hybrid role and flexible working hours.
  • Be part of a fast-scaling Series B company at the forefront of deep tech.
  • Equal pay guaranteed.
  • International exposure in a multicultural, cutting-edge environment.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Machine Learning Engineer/Computer Vision

Senior Machine Learning Engineer - Robotics

Senior Machine Learning Engineer - Crypto

Senior Machine Learning Engineer - Crypto

Senior Machine Learning Engineer - Crypto

Senior Machine Learning Engineer - Crypto

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.