Senior Machine Learning Engineer (Large Systems)

Graphcore
Bristol
3 weeks ago
Create job alert

Bristol, UK; Cambridge, UK; London, UK


About Graphcore

Graphcore is one of the world’s leading innovators in Artificial Intelligence compute.


It is developing hardware, software and systems infrastructure that will unlock the next generation of AI breakthroughs and power the widespread adoption of AI solutions across every industry.


As part of the SoftBank Group, Graphcore is a member of an elite family of companies responsible for some of the world’s most transformative technologies. Together, they share a bold vision: to enable Artificial Super Intelligence and ensure its benefits are accessible to everyone.


Graphcore’s teams are drawn from diverse backgrounds and bring a broad range of skills and perspectives. A melting pot of AI research specialists, silicon designers, software engineers and systems architects, Graphcore enjoys a culture of continuous learning and constant innovation.


Job Summary

As a Senior Machine Learning Engineer in the Applied AI team at Graphcore, you will contribute to advancing AI technology by developing and optimising AI models tailored to our specialised hardware. You will work on large scale systems where performance is critical to the success of our projects. Working closely with the Software development and Research teams, you will play a critical role in identifying Graphcore’s technology. We seek engineers with strong technical skills and an understanding of AI model implementation at scale, eager to make a tangible impact in this rapidly evolving field.


The Team

The Applied AI team’s role is to be proxies for our customers, we need to understand the latest AI models, applications, and software to ensure that Graphcore’s technology works seamlessly with the AI ecosystem and at scale. We build reference applications, contribute to key software libraries e.g. optimising kernels for efficiency on our hardware, and collaborate with the Research team to develop and publish novel ideas in domains such as efficient compute, model scaling and distributed training and inference of AI models for multiple modalities and applications.


If you’re excited about advancing the next generation of AI models on cutting‑edge hardware, we’d love to hear from you!


Responsibilities and Duties

  • Implement latest machine learning models and optimise them for performance and accuracy, scaling to 1000s of accelerators.
  • Test and evaluate new internal software releases, provide feedback to software engineering teams, make necessary code fixes, and conduct code reviews.
  • Benchmark models and key ML techniques to identify performance bottlenecks and improve model efficiency.
  • Design and conduct experiments on novel AI methods, implement them and evaluate results.
  • Collaborate with Research, Software, and Product teams to define, build, and test Graphcore’s next generation of AI hardware.
  • Engage with AI community and keep in touch with the latest developments in AI.
  • Bachelor/Master’s/PhD or equivalent experience in Machine Learning, Computer Science, Maths, Data Science, or related field.
  • Proficiency in deep learning frameworks like PyTorch/JAX.
  • Strong Python or C++ software development skills.
  • Expertise in deep learning from model training to optimisation and evaluation.
  • Experience in distributed training or inference of ML models across 64+ accelerators.
  • Capable of designing, executing and reporting from ML experiments.
  • Developed deep understanding of performance bottlenecks and how to overcome them.
  • Ability to move quickly in a dynamic environment.
  • Enjoy cross‑functional work collaborating with other teams.
  • Strong communicator – able to explain complex technical concepts to different audiences.
  • Experience in one or more of:

    • MLOps for Kubernetes‑based clusters
    • Building production systems with large language models
    • Efficient computing based on low‑precision arithmetic.


  • Experience writing C++/Triton/CUDA kernels for performance optimisation of ML models.
  • Familiarity with HPC systems and networking including Infiniband, NVLink, RoCE technologies.
  • Have contributed to open‑source projects or published research papers in relevant fields.
  • Knowledge of cloud computing platforms.
  • Keen to present, publish and deliver talks in the AI community.

In addition to a competitive salary, Graphcore offers flexible working, a generous annual leave policy, private medical insurance and health cash plan, a dental plan, pension (matched up to 5%), life assurance and income protection. We have a generous parental leave policy and an employee assistance programme (which includes health, mental wellbeing, and bereavement support). We offer a range of healthy food and snacks at our central Bristol office and have our own barista bar! We welcome people of different backgrounds and experiences; we’re committed to building an inclusive work environment that makes Graphcore a great home for everyone. We offer an equal opportunity process and understand that there are visible and invisible differences in all of us. We can provide a flexible approach to interview and encourage you to chat to us if you require any reasonable adjustments.


Applicants for this position must hold the right to work in the UK. Unfortunately at this time, we are unable to provide visa sponsorship or support for visa applications.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.