Senior Machine Learning Engineer

55 Exec Search
Manchester
2 days ago
Create job alert

Manchester / Hybrid / Remote – depending on candidate location. Candidates will be required to come to the Manchester office if required, but are flexible.


Our global client is building advanced behavioural intelligence technology that enables secure, adaptive digital identity. By analysing how people naturally interact with devices, their AI systems generate powerful authentication signals designed for real-world use at scale.


This is a high-impact opportunity to join a rapidly growing AI team and take ownership of designing, training, and deploying cutting-edge behavioural models and data pipelines.


The Role

As a Senior ML Engineer, you will design, build, and refine machine learning models that sit at the core of the company’s behavioural AI platform.


This is a hands-on role working with real-world sensor and interaction data, building predictive models over time-series and human behaviour data, and deploying models that make authentication decisions in production. You’ll collaborate closely with other AI engineers, as well as engineering and product teams, to ensure models are robust, efficient, and production-ready.


Key Responsibilities

  • Develop, train, and evaluate deep learning models for behavioural authentication using time-series and human behaviour data
  • Work with multimodal, event-driven sensor data, including accelerometer, gyroscope, touch dynamics, and device interaction signals
  • Build and maintain data processing pipelines for irregular and asynchronous mobile sensor data
  • Design and train predictive models on behavioural datasets
  • Implement and experiment with modern architectures, including transformer-based and attention-driven models
  • Design and run experiments to improve authentication metrics such as False Accept Rate (FAR) and False Reject Rate (FRR)
  • Track experiments, models, and datasets using tools such as MLflow, ZenML, and structured experiment management workflows
  • Prepare models for efficient on-device execution, balancing accuracy, latency, and mobile hardware constraints
  • Deploy models for edge inference using CoreML and ONNX
  • Work closely with mobile engineering teams to embed AI functionality into production SDKs
  • Contribute to the evolution of large-scale behavioural modelling architectures and shared training infrastructure

What We’re Looking For

Required



  • Strong hands-on experience building deep learning systems in PyTorch (beyond pre-trained models or high-level wrappers)
  • Demonstrated experience working with time-series data and human behaviour data, ideally from sensors, user interactions, or wearables
  • Experience building predictive models on real-world datasets, with an emphasis on model architecture, experimentation, and evaluation
  • Experience implementing modern neural architectures, including transformers, attention mechanisms, custom heads, and positional encodings
  • Comfortable managing reproducible ML workflows, experiments, and model versions using tools such as MLflow, ZenML, or similar
  • Experience deploying machine learning models using cloud infrastructure (AWS preferred), including services such as SageMaker
  • Strong Python skills, including modern tooling (e.g. uv or equivalent dependency/workflow management)
  • A practical, delivery-focused mindset with experience taking models from research to production
  • PhD in Machine Learning, Computer Science, Applied Mathematics, or a related field
  • Experience with behavioural modelling, biometrics, authentication systems, or security-focused AI
  • Background in human activity recognition, behavioural analytics, or gait analysis
  • Exposure to on-device or constrained-environment deployment
  • Familiarity with representation learning or self-supervised approaches
  • Research background or publications in relevant domains
  • Edge Deployment: CoreML, ONNX
  • Data: Python, S3, multimodal sensor and time-series pipelines
  • Collaboration: Git, JIRA, structured OKR methodology

Why You’ll Enjoy Working With Our Client

You’ll join a small, growing AI team where engineers have genuine ownership and autonomy. You’ll be trusted to solve complex, open-ended problems, apply research-driven thinking, and build systems designed to ship at scale. The culture values curiosity, technical depth, and real-world impact.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.