Senior Machine Learning Engineer

BoF Careers
London
1 week ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer - AI Data Trainer

As a Senior Machine Learning Engineer at On, you'll play a critical role in the full lifecycle of our machine learning models. Besides being responsible for training and deploying models, you will spearhead our MLOps initiatives to ensure their seamless and efficient integration and operation in production. This includes championing MLOps best practices, enhancing deployment processes, developing essential tooling and automation to maximize the impact of our AI solutions, and implementing robust monitoring to optimize performance and reliability.


Your Mission

  1. Lead the implementation and continuous improvement of our MLOps strategy, establishing best practices for model development, deployment, and monitoring.
  2. Create and train machine learning models to solve specific business problems, such as product recommendations, customer segmentation, and demand forecasting. Implement such models into production systems to make predictions, drive real-time personalization, and support decision-making.
  3. Design and build the necessary infrastructure and tooling to support efficient and scalable model deployment, including CI/CD pipelines and automated testing.
  4. Implement and own Terraform to manage and provision our cloud infrastructure for machine learning operations.
  5. Oversee the transition to a real-time streaming architecture for our machine learning applications, ensuring efficient data ingestion, feature engineering, and model serving in a streaming context.
  6. Develop and implement a comprehensive monitoring framework to track model performance, identify potential issues, and ensure optimal model health in production. Monitor model performance and update them as needed to adapt to new data and changing conditions.
  7. Collaborate closely with data scientists and engineers to ensure seamless integration of models into our existing systems and workflows. Stay abreast of the latest MLOps trends and technologies to continuously improve our processes and tools.


Your Story

  1. You have 5+ years of experience as a Machine Learning Engineer with a strong focus on MLOps. You have a proven track record of successfully deploying and managing machine learning models in production environments.
  2. You possess deep knowledge of MLOps principles, tools, and best practices.
  3. You are proficient in cloud platforms (Google Cloud Platform is preferred), infrastructure-as-code tools like Terraform.
  4. You have experience with CI/CD pipelines, containerization technologies (e.g., Docker), and orchestration tools (e.g., Kubernetes) and using orchestration tools such as Kubeflow (our preferred tool) or similar frameworks like Apache Airflow to manage and automate ML workflows.
  5. You have experience with real-time data streaming technologies such as Kafka and Confluent and feature stores in such settings.
  6. You are skilled in building and maintaining monitoring systems for machine learning models.
  7. You have excellent communication and collaboration skills, enabling you to effectively work with cross-functional teams.


Bonus:

  • Knowledge of frameworks such as LangChain used to orchestrate LLMs.
  • Experience in LLM evaluations, debugging, and monitoring using tools such as LangFuse or LangSmith.


Meet The Team

We're a growing team of passionate Data Scientists and Machine Learning Engineers working across On to build creative and impactful models end-to-end that personalize experiences, optimize decision making, and predict future trends. We sit within Technology and have the opportunity to collaborate across On - Optimizing how we use data, how we consume data, and how we support On's growth through data is something you could be a part of, and we'd love to hear from you!


What We Offer

On is a place that is centered around growth and progress. We offer an environment designed to give people the tools to develop holistically - to stay active, to learn, explore, and innovate. Our distinctive approach combines a supportive, team-oriented atmosphere, with access to personal self-care for both physical and mental well-being, so each person is led by purpose.


On is an Equal Opportunity Employer. We are committed to creating a work environment that is fair and inclusive, where all decisions related to recruitment, advancement, and retention are free of discrimination.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.