Senior Data Engineer (Data Science Team)

Parkopedia
City of London
3 weeks ago
Create job alert
The Role

We are looking for a skilled and experienced Senior Data Engineer to join our Data Science team. The team ingests large amounts of complex sensor data (billions of data points a day), combines it with data from other teams, and produces advanced modelling products that help people park their car or charge their electric vehicle. For example, we predict the availability of parking in cities across the world and provide drivers with routes that reduce the time they will spend searching for a space near their destination. These machine learning models are high-quality production services and are updated regularly using fresh data.


You will lead the design, development, and enhancement of pipelines to ingest and process streaming data for use in our machine learning models. You will be an important member of our team, lead engineering initiatives and work with smart colleagues in a supportive environment.


Responsibilities

You will develop pipelines for scalable big data processing with Spark, and real-time data streaming with Kafka. These pipelines will need to be written using efficient, testable, and reusable Python code using (for example) Numpy, Pandas and Pyspark. We manage our numerous pipelines using Airflow to meet our data serving and modelling requirements. Our services are reliable, robust, and follow industry best practice in data validation, transformation, and logging. We are hands-on with our infrastructure and cloud deployments.


We are also looking for this position to lead initiatives enhancing our processes and infrastructure. The areas for these improvements could be our CI/CD pipelines, our data monitoring capabilities, or our feature stores. We are always looking for new senior engineers to use their experience to promote best practices amongst our data scientists and junior engineers. Although the work is quite autonomous, we value working in a team and like to collaborate and support each other in any way we can.


Requirements

  • Proven experience as a software or data engineer in complex production environments.
  • High proficiency in Python, including software development standards and knowledge of the Python data science / engineering ecosystem (e.g. Numpy, Pandas).
  • Strong command of Linux, containers (Docker), and infrastructure as code for cloud deployments (AWS preferred).
  • Comfortable leading initiatives and mentoring others.
  • Experience with:

    • Large-scale data processing in the cloud (we use AWS).
    • Distributed processing frameworks, such as Apache Spark.


  • Desirable, experience with:

    • Workflow management tools, such as Apache Airflow.
    • Streaming data processing, such as Apache Kafka.
    • Data or ML platforms, such as Snowflake or Databricks.



Benefits

  • Flexible working - hybrid home and office-based opportunities.
  • Paid Leave if you participate in an event for Charity.
  • 25 Days holiday entitlement.
  • An enhanced Workplace Pension Scheme - 5% by Arrive, 3% by you.
  • Private Medical Health Insurance.
  • Fantastic wellbeing programmes, including On-site Sports massages, Reiki and Head massages every week.
  • Discounted gym membership.
  • Access to Blue Call, a mental health support platform.
  • Enhanced Maternity and Paternity offering.

About us

We’ve signed up to an ambitious journey. Join us!


As Arrive, we guide customers and communities towards brighter futures and more livable cities, it isn’t a challenge just anyone could take on. Luckily, we have something to help us make it happen. Our people and our values. We Arrive Curious, Focused and Together. Just as our entire brand is inspired by the North Star, the shining light leading travelers to their destinations since time began, our values guide us. They help us be at our best. For our customers. For the cities and communities we serve. For ourselves. As a global team, we are transforming urban mobility. Let’s grow better, together.


One of the key brands within the Arrive is Parkopedia.


Parkopedia is the world’s leading connected car services provider, used by millions of drivers and organisations such as Apple, Here, TomTom, and 20 automotive brands ranging from Audi to Volkswagen. Its mission is to provide the best in-car data and transaction services, to make mobility ecological, efficient and convenient.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Engineer, Biostatistics & Data Sciences

Senior Data Engineer - AI & MLOps, Hybrid (Manchester)

Senior Data Engineer (Data Science Team)

Senior Data Engineering & DataOps Leader – Azure

Senior Data Engineer (AI & MLOps, AWS, Python)

Senior Data Science Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.