Senior Backend Engineer - Data Engineer

St James's
2 weeks ago
Create job alert

Our Energy client seeks a Senior Backend Engineer - Data Engineer to join their team in Mayfair, London.

We are looking for a Senior Backend Software Engineer with strong data engineering skills to join a small, agile team developing software solutions for our energy supply and trading functions.

Hybrid working is in play, with 3 days in the office and 2 days at home.

Senior Backend Engineer - Data Engineer - About the role:

My client’s energy business is growing rapidly with a strong focus on using advanced data systems and analytics to deliver exceptional service. We are looking for someone to take ownership of the backend architecture that underpins our analytics applications, user tools, and automated trading workflows.

You will collaborate closely with analysts, data scientists, and business stakeholders to translate requirements into robust, scalable backend solutions. You’ll be responsible for designing and developing services, APIs, data pipelines, and internal applications that integrate analytics and enable better decision-making and operational efficiency.

This is a hands-on role for someone who thrives in a fast-paced, build-first culture without multiple tiers of management. You should be excited to take full ownership of backend development, lead on best practices, and coach others in a collaborative, delivery-focused team.

Experience in retail or wholesale electricity and gas markets is helpful, but a willingness to become an expert in this field is essential. Our success is based on understanding the subject matter from first principles.

Senior Backend Engineer - Data Engineer - Key Responsibilities:

  • Architect, design, develop and maintain backend systems for analytics-driven applications, user tools, and automation workflows.

  • Build and manage APIs and internal services using Python (FastAPI, Flask) and cloud-native tooling.

  • Develop and manage data pipelines, backend components, and supporting infrastructure.

  • Manage server resources and backend processing environments to ensure reliability and scalability.

  • Monitor and maintain application performance, availability, and data quality across production systems.

  • Implement and maintain CI/CD pipelines, testing frameworks, and DevOps practices to enable robust delivery.

  • Write, test, and document code in line with quality standards and engineering best practices.

  • Collaborate with operations, analytics and commercial teams to gather requirements and translate them into scalable technical solutions.

  • Support analysts and data scientists in deploying and operationalising analytics tools and models.

  • Lead or support the data engineering team, help structure development workflows, and mentor junior team members.

  • Stay current with technological advancements and promote a culture of continuous improvement.

  • Present technical solutions to stakeholders and train non-technical users on tools and workflows.

    Senior Backend Engineer - Data Engineer - Skills Required:

  • Python (FastAPI, Flask)

  • REST API development

  • Containerisation: Docker, Kubernetes

  • CI/CD: Azure DevOps, GitHub Actions

  • Software testing and documentation practices

  • SQL, PySpark, Databricks

  • Relational databases and data lake architecture

  • Model and data pipeline integration (e.g. MLflow)

  • Streamlit or other lightweight UI frameworks

  • Microsoft Azure (Functions, Storage, Compute)

  • Monitoring tools (Grafana, Prometheus, etc.)

  • Performance optimisation and resource management

  • Agile delivery practices (Jira, Azure Boards, etc.)

  • Strong communication with technical and business teams

  • Mentoring and knowledge sharing within the team

    Desirable Skills:

  • Experience in energy supply or trading

  • Familiarity with dbt or modular analytics tooling

  • Exposure to forecasting or optimisation workflows

  • Knowledge of React or frontend tools for internal apps

  • Networking or IoT integration experience

    What they offer:

  • A high-autonomy role in a flat, delivery-focused team

  • Ownership of backend systems for real-time analytics and automation

  • A fast-moving, hands-on culture with meaningful technical challenges

  • The opportunity to apply software and data engineering to real-world energy problems

Related Jobs

View all jobs

Senior Backend Engineer - Data Engineer

Senior Backend Engineer - Data Governance

Mid/Senior Backend Engineer (Node.js & TS)

Senior Software Engineer - Backend & Machine Learning

Software Engineer

Senior Software Engineer - Search Quality (Remote - United Kingdom)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Non‑Technical Professionals: Where Do You Fit In?

Your Seat at the AI Table Artificial Intelligence (AI) has left the lab and entered boardrooms, high‑street banks, hospitals and marketing agencies across the United Kingdom. Yet a stubborn myth lingers: “AI careers are only for coders and PhDs.” If you can’t write TensorFlow, surely you have no place in the conversation—right? Wrong. According to PwC’s UK AI Jobs Barometer 2024, vacancies mentioning AI rose 61 % year‑on‑year, but only 35 % of those adverts required advanced programming skills (pwc.co.uk). The Department for Culture, Media & Sport (DCMS) likewise reports that Britain’s fastest‑growing AI employers are “actively recruiting non‑technical talent to scale responsibly” (gov.uk). Put simply, the nation needs communicators, strategists, ethicists, marketers and project leaders every bit as urgently as it needs machine‑learning engineers. This 2,500‑word guide shows where you fit in—and how to land an AI role without touching a line of Python.

ElevenLabs AI Jobs in 2025: Your Complete UK Guide to Crafting Human‑Level Voice Technology

"Make any voice sound infinitely human." That tagline catapulted ElevenLabs from hack‑day prototype to unicorn‑status voice‑AI platform in under three years. The London‑ and New York‑based start‑up’s text‑to‑speech, dubbing and voice‑cloning APIs now serve publishers, film studios, ed‑tech giants and accessibility apps across 45 languages. After an $80 m Series B round in January 2024—which pushed valuation above $1 bn—ElevenLabs is scaling fast, doubling revenue every quarter and hiring aggressively. If you’re an ML engineer who dreams in spectrograms, an audio‑DSP wizard or a product storyteller who can translate jargon into creative workflows, this guide explains how to land an ElevenLabs AI job in 2025.

AI vs. Data Science vs. Machine Learning Jobs: Which Path Should You Choose?

In recent years, the fields of Artificial Intelligence (AI), Data Science, and Machine Learning (ML) have experienced explosive growth. Spurred by the increase in data availability, advances in computing power, and the demand for intelligent decision-making, organisations of all sizes are investing heavily in these areas. If you’ve been exploring AI jobs on www.artificialintelligencejobs.co.uk, you’ve likely noticed that employers use terms like “AI,” “Data Science,” and “Machine Learning”—often interchangeably. While they are closely related, there are nuanced differences between these fields. Understanding these distinctions is key if you’re trying to decide which path suits you best. This comprehensive guide will help you differentiate among AI, Data Science, and Machine Learning. We will discuss the key skills for each, typical job roles, salary ranges, and provide real-world examples of professionals working in these fields. By the end, you should have a clearer idea of where your strengths and passions might fit, helping you take the next step towards securing your ideal role in the world of data-driven innovation.