Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Scientist

NearTech Search
London
2 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist/AI Engineer (Remote)

Senior Data Scientists / Analysts – SC/DV Cleared — Multiple Openings

This range is provided by NearTech Search. Your actual pay will be based on your skills and experience — talk with your recruiter to learn more.

Base pay range

Salary between £75,000 - £90,000 DOE with yearly review (financial year)

Multilingual Senior Recruitment Consultant | Python, Backend Engineering, and Data Science

Senior Data Scientist – MLOps

My client works in the Insurance / Risk Management space and is relatively well established, having served their clients over the last 12 years. The firm was a relatively late adopter of AI, mostly due to some of the red tape and regulations affiliated with their more traditional sector. However, with a new CEO onboard and a more pragmatic approach, the firm is keen to play catch-up and help revolutionise their industry as others are doing.

To help accelerate this journey, they’ve invested heavily in the AI team and have now got some heavy-hitters in to lead on some cool, transformational projects. With a few MLEs already hired, they’re now looking for a senior MLOps individual to spearhead cloud deployment and management of some of the Key ML pipelines / infrastructure.

Day-to-Day Responsibilities:

  • Design, implement, and maintain robust MLOps pipelines to ensure seamless deployment, monitoring, and scaling of machine learning models in production.
  • Collaborate within the team to operationalise models, ensuring they are scalable, reliable, and efficient.
  • Develop and maintain CI/CD pipelines for ML workflows, integrating automated testing, model validation, and version control.
  • Monitor model performance in production, identifying and resolving issues such as data drift, model degradation, and latency bottlenecks.
  • Optimise cloud infrastructure for machine learning workloads, ensuring cost-efficiency and scalability.
  • Document processes, workflows, and best practices to ensure knowledge sharing and continuity within the team.

It goes without saying, but given the novelty of MLOps roles on the whole, the engineer should be keen on keeping up with best practices, attending workshops / events (on company time) and ensuring that they stay at the top of their game.

Technical Expertise:

  • Strong experience with cloud platforms such as AWS or Azure, including services like SageMaker, MLflow / Kubeflow.
  • Solid understanding of CI/CD tools (Jenkins, GitLab CI, GitHub Actions) and version control systems (aka Git).
  • Experience with IAC - Terraform or CloudFormation.

Nice to haves:

  • Familiarity with data engineering tools / frameworks (Apache Spark / Airflow) for pre-processing and managing large datasets.
  • Experience of working within the Insurance / Risk sector is really beneficial but not essential.
  • Good allowance for continued learning / development – bolstered by a £2,200 individual yearly learning fund.
  • Flexible working to suit care / caregiving needs.
  • Cycle to work schemes / season ticket initiatives.
  • 27 days of annual leave rising to 30 after 3 years of service.

Seniority level

Not Applicable

Employment type

Full-time

Job function

Business Development and Information Technology

Industries

Insurance


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.