Senior Machine Learning Scientist - Search

Depop
London
6 months ago
Create job alert

Senior Machine Learning Scientist - Search

Team: Engineering & Data

Location: Depop - London

Company Description

Depop is the community-powered circular fashion marketplace where anyone can buy, sell and discover desirable secondhand fashion. With a community of over 35 million users, Depop is on a mission to make fashion circular, redefining fashion consumption. Founded in 2011, the company is headquartered in London, with offices in New York and Manchester, and in 2021 became a wholly-owned subsidiary of Etsy. Find out more at www.depop.com Our mission is to make fashion circular and to create an inclusive environment where everyone is welcome, no matter who they are or where they’re from. Just as our platform connects people globally, we believe our workplace should reflect the diversity of the communities we serve. We thrive on the power of different perspectives and experiences, knowing they drive innovation and bring us closer to our users. We’re proud to be an equal opportunity employer, providing employment opportunities without regard to age, ethnicity, religion or belief, gender identity, sex, sexual orientation, disability, pregnancy or maternity, marriage and civil partnership, or any other protected status. We’re continuously evolving our recruitment processes to ensure fairness and are open to accommodating any needs you might have. If, due to a disability, you need adjustments to complete the application, please let us know by sending an email with your name, the role to which you would like to apply, and the type of support you need to complete the application to . For any other non-disability related questions, please reach out to our Talent Partners.

Life is about creating. That's why we're home to over 30 million artists, stylists, designers, sneakerheads — and you? We're the community-powered, circular-minded marketplace changing the world of online fashion. Now it's time to get inspired at Depop.

Responsibilities

Job description

Job Description

Depop is looking for a versatile Senior Machine Learning Scientist to join our Search & Ranking team in the UK. As part of the team you will work alongside a Product Manager, Backend Engineers and other ML Scientists playing a key role in building innovative models to power Depop’s search engine and ranking across the app.

Responsibilities:

You will:

Research, design and deliver ML solutions to take on problems within the search & discovery space:

Learning-to-rank models

Vector search & embedding models

etc.

Understand requirements from various partners across the business, designing machine learning solutions to address business problems, such as:

How can we surface relevant results for this search?

How can we show users personalised results in real time?

What is the right price for this user?

Set up and conduct large-scale experiments to test hypotheses and drive product development

Keep up to date with pioneering research, contribute to Machine Learning groups, and apply new techniques for NLP, image processing, etc.

Participate in team ceremonies (follow the agile cadence, technical whiteboarding sessions, product road mapping, etc)

Qualifications

Skills and experience

Significant experience (3+ years) working as a Data Scientist, with a track record of delivering models to solve industry-scale problem

Experience with experiment design and conducting A/B tests

Proficiency in Python, with the ability to write production-grade code and a good understanding of data engineering & MLOps

Solid understanding of machine learning concepts, familiarity working with common frameworks such as sci-kit-learn, TensorFlow, or PyTorch

Collaborative and humble great teammate with an ability to work wimulti-functionalnal teams, including technical and non-technical stakeholders

Passion for learning new skills and staying up-to-date with ML algorithms

Bonus points

Experience with Databricks and PySpark

Experience with deep learning & large language models

Experience with traditional, semantic, and hybrid search frameworks (e.g. Elasticsearch)

Experience working with AWS or another cloud platform (GCP/Azure)

Related Jobs

View all jobs

Senior Machine Learning Scientist

Senior Machine Learning Scientist

Senior Machine Learning Scientist

Senior Machine Learning Scientist

Senior Machine Learning Scientist - Search

Senior Machine Learning Scientist (Viator)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.