Research Fellow in Statistical Ecology

UCL Eastman Dental Institute
London
1 year ago
Applications closed

Related Jobs

View all jobs

Research Fellow in Data Science

Research Fellow in Applied Machine Learning

Reader in Artificial Intelligence

Reader in Artificial Intelligence (Machine Learning, NLP, Reinforcement Learning, and AI Security)

Reader in Artificial Intelligence

Reader in Artificial Intelligence

About the role

Your role will be to develop and apply novel computational and statistical tools to predict the stability of ecological communities. This will involve constructing, optimising, and testing Bayesian hierarchical models and machine learning models, with the aim of predicting community composition and coexistence using environmental-, functional-, and phylogenetic information. Applications and model-testing will focus on existing datasets, primarily of forest ecosystems, but will also include plant, aquatic, and microbial communities as needed.

This role is an open-ended role with funding for up to three years. Start date is negotiable, but ideally in Q1 of .

Appointment at Grade 7 is dependent upon having been awarded a PhD; if this is not the case, initial appointment will be at Grade 6B with payment at Grade 7 being backdated to the date of final submission of the PhD Thesis.

This appointment is subject to UCL Terms and Conditions of Service for Research and Professional Services Staff. Please visit for more information.

Interviews will take place in early .

A job description and person specification can be accessed at the bottom of this page.

If you have any queries about the role, please contact Dr Daniel Maynard, .
If you need reasonable adjustments or a more accessible format to apply for this job online or have any queries about the application process, please contact the HR Administrator.

About you

The successful candidate must hold or be submitting a PhD in a relevant area, including an ecological or environmental discipline, statistics, computer science, data science, or related field. You must have strong computational skills and significant experience working on complex statistical models, ideally using Bayesian or machine-learning approaches. Strong programming knowledge in at least one language are required, ideally in R, Python, or Julia.

Experience using Git, the Stan language, parallel and distributed computing, and/or shell scripting are strongly encouraged but not required. Some knowledge of plant ecology, forest ecology, and/or theoretical ecology is useful but likewise not required.

Experience with the peer-review process is mandatory, as is the ability to prepare initial and final drafts of manuscripts for publication. Excellent written and verbal communication skills are essential, including the ability to keep meticulous records and well-annotated computer code.

What we offer

The UCL Ways of Working supports colleagues to be successful and happy at UCL through sharing expectations around how we work – please see to find out more.

As well as the exciting opportunities this role presents, we also offer some great benefits some of which are below:
• 41 Days holiday (27 days annual leave 8 bank holiday and 6 closure days)
• Additional 5 days’ annual leave purchase scheme
• Defined benefit career average revalued earnings pension scheme (CARE)
• Cycle to work scheme and season ticket loan
• Immigration loan and expenses
• Relocation scheme for certain posts
• On-Site nursery
• On-site gym
• Enhanced maternity, paternity and adoption pay
• Employee assistance programme: Staff Support Service
• Discounted medical insurance

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.