Quantitative Researcher, Quantamental

Winston Fox
London
1 year ago
Applications closed

Related Jobs

View all jobs

Postdoctoral Researcher in Biostatistics - Statistical Machine Learning

Senior Postdoctoral Researcher in Biostatistics: Statistical Machine Learning

Research Fellow in Applied Machine Learning

Data Scientist, Machine Learning Engineer, Data Analyst, Data Engineer, AI Engineer, Business Intelligence Analyst, Data Architect, Analytics Engineer, Research Data Scientist, Statistician, Quantitative Analyst, ML Ops Engineer, Applied Scientist, Insigh

Senior Data Scientist

Machine Learning Engineer

A minimum of 2+ years of experience conducting quantitative investment research at a hedge fund or prop trader is required. Not reviewing candidates with work visa requirements (sponsorship).


This team uniquely blends math, programming, data science, and financial expertise, giving it an edge in extracting insights from complex data and generating new investment ideas.


Responsibilities

  • Identify, evaluate and onboard new data sources (traditional and alternative) that create an analytical edge.
  • Conduct original research (thematic and stock-specific) using data and analytics tools to support your coverage area.
  • Contribute to the evolution of infrastructure, processes and analytics.
  • Deliver significant and quantifiable impact on portfolio PnL.


Requirements

  • First-class BSc and MSc in mathematics, statistics, physics, computer science, operations research, or another quantitative discipline from a top University.
  • 2+ years of experience conducting investment research (systematic or fundamental). Having received excellent training and mentorship on the research process, markets, structure, etc
  • Demonstrated track record of excellence and impact in previous roles.
  • Strong proficiency in Python and SQL
  • Demonstrated ability to learn and apply new methodologies to alpha generation.
  • Effective communicator, entrepreneurial spirit, and action-orientated.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.