Quantitative Researcher (Staff Data Scientist)

Wise
London
11 months ago
Create job alert

Company Description

Wise is one of the fastest growing companies in Europe and we’re on a mission: to make money without borders the new normal. We’ve got 13 million customers across the globe and we’re growing. Fast.

Current banking systems don't let us send, spend or receive money across borders easily. Or quickly. Or cheaply. 

So, we’re building a new one.

Job Description

We are seeking a Talented Markets Data Scientist (Quantitative researcher) with expertise in FX risk modelling to join our dynamic Treasury team. This role focuses on driving our FX risk and pricing models and optimising their impact on our trading strategies. 

Your work will have a direct impact on and millions of our customers.

As part of the team, you’ll be at the forefront of designing, implementing, and refining models that manage foreign exchange (FX) risk, optimising the effectiveness of hedging strategies, supporting pricing, and influencing decision-making processes across the organisation. Your mission is to help us assess and manage our risks in real time, and help us keep lowering our prices and keep our market risk capital requirements scalable.

Our FX team manages the risk on our GBP 105bn+ FX book and our GBP 15bn of customer assets.

Here’s how you’ll be contributing:

FX Risk modelling and analysis

Develop and maintain advanced FX risk models, leveraging cutting-edge quantitative techniques to assess and manage FX risks (scenario modelling, stress testing, BAU risk metrics)

Perform back-testing and calibration of models to ensure accuracy, robustness, and regulatory compliance.

Collaborate with engineering teams to implement models within the risk and trading platforms, ensuring scalability and operational efficiency.

Develop bespoke models and analyses in preparation for market stress events and new product launches

Customer-centric insights

Conduct in-depth quantitative analysis to support pricing strategies and deliver insights on FX impacts on customer portfolios and products.

Model customer behaviour under various FX and market scenarios, informing decisions that maximise customer value and minimise risk.

Proactively monitor and assess the customer impact of FX fluctuations, recommending risk mitigation strategies that align with customer needs and regulatory standards.

Collaborative strategy development

Work closely with FX dealers to integrate model findings into real-time risk management and FX hedging strategies underpinned by customer behaviour models across a multi-region portfolio of products and currencies, including many exotics.

Partner with product and operational teams to translate complex FX risk scenarios into actionable insights for customer-focused solutions.

Document and present model results and risk assessments to senior stakeholders, controllers and the Risk team (the second line of defence). Explain complex concepts and propose strategies that align with the company’s risk appetite and business objectives.

A bit about you: 

Strong Python knowledge. Ability to read through code, especially Java. Demonstrable experience collaborating with engineers.

Strong knowledge in at least a few of the following areas: statistics, machine learning, linear algebra, optimisation.

A good understanding of FX market fundamentals and risk management methods and techniques, including VaR/sVAR, EVT/ES, PFE, XFA and Monte Carlo methods. 

A strong product mindset with the ability to work in a cross-functional and cross-team environment;

Good communication skills and ability to get the point across to non-technical individuals;

Strong problem solving skills with the ability to help refine problem statements and figure out how to solve them.

Some extra skills that are great (but not essential):

Experience in interest rate and cashflow modelling, derivatives pricing (including exotic options), behavioural models

Real FX trading experience (especially with algorithms)

Experience with building and maintaining backtesting engines and quantifying backtesting output using standard industry metrics ( Sharpe, Sortino)

Additional Information

For everyone, everywhere. We're people building money without borders — without judgement or prejudice, too. We believe teams are strongest when they are diverse, equitable and inclusive.

We're proud to have a truly international team, and we celebrate our differences.
Inclusive teams help us live our values and make sure every Wiser feels respected, empowered to contribute towards our mission and able to progress in their careers.

If you want to find out more about what it's like to work at Wise visit .

Keep up to date with life at Wise by following us on and .

Related Jobs

View all jobs

Quantitative Researcher (Staff Data Scientist)

Quantitative Researcher – Machine Learning-Driven Systematic Trading Firm (London)

Quantitative Researcher – Machine Learning

Machine Learning Quantitative Researcher - Anson McCade

Data Scientist

Postdoctoral Researcher in Biostatistics - Statistical Machine Learning

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.