Machine Learning Scientist - Rosalind

Relation Therapeutics Limited
London
1 month ago
Applications closed

Related Jobs

View all jobs

Machine Learning Scientist

Machine Learning Scientist

25.03.25 Machine Learning Scientists/Engineers, Cambridge, UK

Senior Machine Learning Scientist Cardiff, London or Remote (UK)

Computational Biology & Machine Learning Scientist

Computational Biology & Machine Learning Scientist

Machine Learning Scientist – Rosalind

About Relation

Relation is an end-to-end biotech company developing transformational medicines, with technology at our core. Our ambition is to understand human biology in unprecedented ways, discovering therapies to treat some of life’s most devastating diseases. We leverage single-cell multi-omics directly from patient tissue, functional assays, and machine learning to drive disease understanding—from cause to cure.

This year, we embarked on an exciting dual collaboration with GSK to tackle fibrosis and osteoarthritis, while also advancing our own internal osteoporosis programme. By combining our cutting-edge ML capabilities with GSK’s deep expertise in drug discovery, this partnership underscores our commitment to pioneering science and delivering impactful therapies to patients.

We are rapidly scaling our technology and discovery teams, offering a unique opportunity to join one of the most innovative TechBio companies. Be part of our dynamic, interdisciplinary teams, collaborating closely to redefine the boundaries of possibility in drug discovery. Our state-of-the-art wet and dry laboratories, located in the heart of London, provide an exceptional environment to foster interdisciplinarity and turn groundbreaking ideas into impactful therapies for patients.

We are committed to building diverse and inclusive teams. Relation is an equal opportunities employer and does not discriminate on the grounds of gender, sexual orientation, marital or civil partner status, gender reassignment, race, colour, nationality, ethnic or national origin, religion or belief, disability, or age. We cultivate innovation through collaboration, empowering every team member to do their best work and reach their highest potential.

By joining Relation, you will become part of an exceptionally talented team with extraordinary leverage to advance the field of drug discovery. Your work will shape our culture, strategic direction, and, most importantly, impact patients’ lives.

The Opportunity

As a Machine Learning Scientist within the Rosalind team, you will design and apply advanced machine learning techniques to DNA and genetic data. This role is ideal for someone with a strong machine learning background and an interest in genetics. Your work will directly contribute to uncovering non-trivial associations between genetic variants and diseases, ultimately advancing therapeutic discovery.

The Team You Will Join

The Rosalind team sits at the cutting edge of using DNA models to identify genes involved in diseases that have not been previously recognised. Think of the team as the starting point of a discovery funnel: the Rosalind team’s work feeds this funnel by using DNA models to uncover genes involved in diseases. The day-to-day focus is on identifying non-trivial associations between genetic variants and diseases, providing foundational insights for further therapeutic development.

It’s an exciting opportunity to contribute to groundbreaking research and help build the best possible models for advancing disease understanding.

Your Responsibilities

  1. Develop and apply machine learning techniques to analyse genetic data and DNA models.

  2. Collaborate with experimental teams and computational biologists to design, test, and validate ML-driven hypotheses.

  3. Implement transformers and other ML techniques to address challenges in biological sequences, such as DNA modelling.

  4. Contribute to building foundational models with external data and fine-tune them using disease-specific internal data.

  5. Stay updated with the latest developments in machine learning and genomics to innovate and optimise model development.

Professionally, You Have

  1. A PhD in machine learning, computational biology, or a related field, or equivalent industrial experience.

  2. Demonstrated experience applying machine learning techniques to DNA or genetic data. Alternatively, expertise in using transformers for biological data, such as DNA, protein, or evolutionary-scale modelling.

  3. Proficiency in Python and at least one ML platform (e.g., PyTorch, TensorFlow).

  4. Flexibility and the ability to tackle new challenges at the intersection of biology and machine learning.

Desirable Knowledge or Experiences

  1. Experience with applying machine learning to biological sequences, including DNA or proteins.

  2. Strong understanding of transformers and their applications in biomedical research.

  3. Knowledge of lab-in-the-loop frameworks and integration of ML techniques with experimental data.

Personally, you are

  1. Inclusive leader and team player.

  2. Clear communicator.

  3. Driven by impact.

  4. Humble and hungry to learn.

  5. Motivated and curious.

  6. Passionate about making a difference in patients’ lives.

Join us in this exciting role, where your contributions will directly impact advancing our understanding of genetics and disease risk, supporting our mission to deliver transformative medicines to patients. Together, we’re not just conducting research—we’re setting new standards in the fields of machine learning and genetics. The patient is waiting!

Relation is a committed equal opportunities employer.

RECRUITMENT AGENCIES: Please note that Relation does not accept unsolicited resumes from agencies. Resumes should not be forwarded to our job aliases or employees. Relation will not be liable for any fees associated with unsolicited CVs.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.