Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer Institute of Computation / 05 March 2025

Tbwa Chiat/Day Inc
Cambridge
5 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer - 2/3 Month Contract

Machine Learning Engineer - 2/3 Month Contract

Machine Learning Engineer - 2/3 Month Contract

Machine Learning Engineer - 3/4 Month Contract

Machine Learning Engineer

Postdoctoral Data Scientist Engineer for the Quantitative Neuroradiology Initiative

Our mission is to restore cell health and resilience through cell rejuvenation to reverse disease, injury, and the disabilities that can occur throughout life.

Diversity at Altos

We believe that diverse perspectives are foundational to scientific innovation and inquiry. At Altos, exceptional scientists and industry leaders from around the world work together to advance a shared mission. Our intentional focus is on Belonging, so that all employees know that they are valued for their unique perspectives. We are all accountable for sustaining a diverse and inclusive environment.

What You Will Contribute To Altos

Altos Labs is building high-performance, scalable, quantitative solutions for biomedical image analysis and integration with multi-Omics data. The team works at multiple scales including data from Electron/Light Microscopy, Digital Histology and Pathology up to functional analysis In Vivo. We will enable and accelerate the Altos mission by leveraging state of the art computer vision and machine learning, and collaborating with MLOps at Altos to make all our models easily trainable, findable, interpretable, and accessible across diverse research groups.

Responsibilities

  • Evaluate state of the art and retrain AI models across the full spectrum of imaging including: de novo protein design, structure identification and dynamics in single particle CryoEM; light microscopy and multi-omics data integration and cross domain mapping of data collected in situ and in vivo.
  • Demonstrate software engineering skills to develop reliable, scalable, performant distributed systems in a cloud environment.
  • Develop efficient data loading strategy and performance tracking to train large models with distributed training across multiple nodes.
  • Build, deploy, and manage multi-modal analysis pipelines for scientific analysis, and machine learning workflows in an integrated, usable framework.
  • Understand scientists' needs across a wide range of scientific disciplines by collaborating with both users and software engineers.
  • Bridge the communication gap between experimental scientists, algorithm developers and software deployers.

Who You AreMinimum Qualifications

  • BS/MS in Computer Science/Biomedical Engineering or related quantitative field.
  • Candidates should have relevant industry and/or academic experience.
  • Experience with one or more programming languages commonly used for large-scale data management and machine learning, such as Python, C++, Pytorch/Tensorflow, Pytorch Lightning etc.
  • Previous experience with Machine Learning at scale: Large Language Models and Self-Supervised/Contrastive/Representation Learning for Computer Vision applications and multi-modal integration.
  • Experience applying software engineering practices in a scientific environment, or another environment with similar characteristics.
  • Demonstrated track record of hands-on technical leadership and scientific contributions such as papers or conference communications.
  • Excited to design and implement technical and cultural standards across scientific and technical functions.

Preferred Qualifications

  • Bioinformatics data processing and analysis.
  • Experience with cloud computing and containerization.
  • Knowledge of genetics/human genetics.

The salary range forCambridge, UK:

Exact compensation may vary based on skills, experience, and location.

What We Want You To Know

We are a culture of collaboration and scientific excellence, and we believe in the values of inclusion and belonging to inspire innovation.

Altos Labs provides equal employment opportunities to all employees and applicants for employment and prohibits discrimination and harassment of any type without regard to race, color, religion, age, sex, national origin, disability status, genetics, protected veteran status, sexual orientation, gender identity or expression, or any other characteristic protected by federal, state or local laws.

This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

Altos currently requires all employees to be fully vaccinated against COVID-19, subject to legally required exemptions (e.g., due to a medical condition or sincerely-held religious belief).

Thank you for your interest in Altos Labs where we strive for a culture of scientific excellence, learning, and belonging.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.