National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer

Stepney
3 weeks ago
Create job alert

Machine Learning Engineer
Up to £70K DOE
Hybrid – London (2 days per week onsite)

My client is looking for a Junior to Mid-Level Machine Learning Engineer to take ownership of the infrastructure and services that power machine learning systems in production. In this role, you’ll act as a bridge between data science and engineering, ensuring robust, scalable, and low-latency deployment of models that serve millions of requests per day.

You’ll be responsible for building and maintaining Python microservices, leveraging modern DevOps practices and tooling to support rapid, reliable delivery. With sub-second response times and a high-throughput environment (2M+ requests/day), this is a high-impact role that blends software engineering, DevOps, and MLOps at scale.

Key Responsibilities

  • Design, develop, and maintain Python microservices for serving machine learning models

  • Collaborate with Data Scientists to deploy, monitor, and support models in production

  • Implement and manage CI/CD pipelines using Azure DevOps

  • Support containerized deployments with Kubernetes and Docker

  • Ensure high performance, fault-tolerant, and secure infrastructure

  • Promote code quality, testing standards, and scalable architecture

  • Proactively identify infrastructure improvements and lead implementation

    Requirements

  • 2 + years of experience in Software Engineering, DevOps, or Data Engineering

  • Strong Python skills with experience in microservices and web frameworks

  • Solid understanding of CI/CD, ideally using Azure DevOps

  • Familiarity with containerized environments (Docker/Kubernetes)

  • Exposure to Data Science or Machine Learning concepts

  • Experience operating in high-throughput environments

  • Independent, curious, and driven by continuous improvement

  • Effective communicator with the ability to bridge data science and engineering teams

    Why Join?

    You’ll be joining a company with strong business performance and ambitious plans for data-driven growth. This is a rare opportunity to take technical ownership of real-time machine learning infrastructure and play a key role in scaling systems that make an immediate business impact

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer - Generative AI

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for AI Jobs: 10 Tweaks That Triple Recruiter Views

In today’s fiercely competitive AI job market, simply having a LinkedIn profile isn’t enough. Recruiters and hiring managers routinely scout for top talent in machine learning, data science, natural language processing, computer vision and beyond—sometimes before roles are even posted. With hundreds of applicants vying for each role, you need a profile that’s optimised for search, speaks directly to AI-specific skills, and showcases measurable impact. By following this step-by-step LinkedIn for AI jobs checklist, you’ll make ten strategic tweaks that can triple recruiter views and position you as a leading AI professional. Whether you’re a fresh graduate aiming for your first AI position or a seasoned expert targeting a senior role, these actionable changes will ensure your profile stands out in feeds, search results and recruiter queues. Let’s dive in.

Part-Time Study Routes That Lead to AI Jobs: Evening Courses, Bootcamps & Online Masters

Artificial intelligence (AI) is reshaping industries at an unprecedented pace. From automating mundane tasks in finance to driving innovation in healthcare diagnostics, the demand for AI-skilled professionals is skyrocketing. In the United Kingdom alone, AI is forecast to deliver over £400 billion to the economy by 2030 and generate millions of new jobs across sectors. Yet, for many ambitious professionals, taking time away from work to upskill can feel like an impossible ask. Thankfully, part-time learning options have proliferated: evening courses, intensive bootcamps and flexible online master’s programmes empower you to learn AI while working. This comprehensive guide explores every route—from short tasters to deep-dive MScs—showcasing providers, course formats, funding options and practical tips. Whether you’re a career changer, a busy manager or a self-taught developer keen to go further, you’ll discover a pathway to fit your schedule, budget and goals.