Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer

Hinckley
4 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

An exceptional opportunity for a Machine Learning Engineer (with Full-Stack experience) to join an innovative market leader at the forefront of developing next-generation solutions that transform digital interactions. The role will focus on projects to leverage state-of-the-art generative AI, retrieval-augmented generation (RAG), and reasoning frameworks to build intelligent and context-aware systems.

We are seeking talented Machine Learning Engineers with full-stack software development experience to join our client's team and help shape the future of AI-powered automation. Within this dynamic role varied duties will include:

Search relevancy engineering.
Conversational AI Development: Design, train, fine-tune, and deploy LLMs with reasoning capabilities.
Retrieval-Augmented Generation (RAG): Implement, optimise, and scale RAG pipelines for effective information retrieval from structured and unstructured sources.
Model Fine-Tuning & Training: Train domain-specific models using techniques like LoRA, QLoRA, PEFT, reinforcement learning, and supervised fine-tuning (SFT).
Model Deployment & Inferencing: Optimise model serving and inference using vLLM, DeepSpeed, TensorRT, Triton, and other acceleration frameworks.
Multi-Agent Systems: Develop and integrate agentic capabilities using frameworks such as LangChain, CrewAI, AutoGen, and DSPy.
AWS Cloud & MLOps: Deploy scalable machine learning workloads on AWS using services like SageMaker, Bedrock, Lambda, S3, DynamoDB, ECS, and EKS.
End-to-End AI Product Development: Work across the full ML lifecycle, from data collection and preprocessing to model evaluation, deployment, and monitoring.
Full-Stack Integration: Develop APIs and integrate ML models into web applications using FastAPI, Flask, React, TypeScript, and Node.js.
Vector Databases & Search: Implement embeddings and retrieval mechanisms using Pinecone, Weaviate, FAISS, Milvus, ChromaDB, or OpenSearch.Required skills & experience:

3-5+ years in machine learning and software development
Proficient in Python, PyTorch or TensorFlow or Hugging Face Transformers
Experience with RAG, LLM fine-tuning, and expertise in AWS and cloud-native AI deployments.
Full-stack experience (React, TypeScript, Node.js) and API development.
Familiarity with vector search and multi-agent orchestrationApply now to join this high growth and award-winning organisation with the opportunity to be part of building the future of AI driven projects and solutions. The role offers a highly competitive salary and benefits package and will be office based in Leicestershire.

MLE(phone number removed)AM

INDAM

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.