Lead Data Scientist - Sanctions Screening

Wise
London
10 months ago
Create job alert

Company Description

Wise is a global technology company, building the best way to move and manage the world’s money. Min fees. Max ease. Full speed.

Whether people and businesses are sending money to another country, spending abroad, or making and receiving international payments, Wise is on a mission to make their life easier and save them money.

As part of our team, you will be helping us create an entirely new network for the world's money. For everyone, everywhere.

More about .

Job Description

About the Role: 

Our screening team is responsible for sanctions, PEPs (Politically Exposed Persons) and Adverse Media screening. 

The screening team has a name matching service that is routinely tested against an internal benchmarking suite, and annually against external benchmarking suites. 

We are looking for someone to own the testing, tuning and optimisation of these matching algorithms. The candidate will own this function - be responsible for the overall testing and tuning strategy, deep dive testing results, understanding how to optimise rules for efficiency and effectiveness and create rules for complex controls.

Here’s how you’ll be contributing:

Automatising algorithm testing on real customer data as well as synthetic data. Packaging the service into a library or deploying it to staging or production environments

Benchmark testing

Analyse results from exact name matching and fuzzy name matching against internal and external benchmarks

Identify and categorise types of missed cases and map those to known or new issues

Propose technical solutions to reduce the number of missed cases identified

Benchmark creation

Design an internal test set to evaluate both the precision and recall of the screening engine

Align performance on the test set with real-life production performance

Extend internal benchmarking to new scenarios for better coverage of screening algorithms

Define an overall strategy for testing and tuning

Evaluate the use of an internal benchmarking tool 

Evaluate testing capabilities of external vendors in the market to define the most effective method of continuous external benchmarking, processes of governance 

Tailor business rules to reduce hit rate, prepare tuning data, reviewing hit reduction strategies and work with product managers, compliance and engineers to ensure roadmap alignment

Rule optimisation

Tweaking engine configuration to find the sweet spot for precision and recall.

Provide answers on how many historical true positives we would miss based on different optimisations

Work on advanced rules for complicated controls, such as vessel screening
 

Uncover and action on opportunities to help the Screening operational team scale

Automatising or creating solutions to assist operations in their work

Modify existing tooling introducing LLM assistants to improve the efficiency of agents and speed of case resolution

A bit about you: 

Experience implementing, testing and evaluating performance of multiple rules across systems;

Strong Python knowledge. Ability to read through code, especially Java. Demonstrable experience collaborating with engineering on services;

Strong algorithmic design and testing skills. A big plus for proven experience with name matching algorithms;

Experience with statistical analysis and good presentation skills to drive insight into action;

A strong product mindset with the ability to work independently in a cross-functional and cross-team environment;

Good communication skills and ability to get the point across to non-technical individuals;

Strong problem solving skills with the ability to help refine problem statements and figure out how to solve them.

Some extra skills that are great (but not essential):

Familiarity with automating operational processes through technical solution, for example Large Language Models;

Knowledge of Sanctions and Name Screening Optimisation and Tuning

Experience working in a heavily regulated business domain.

We’re people without borders — without judgement or prejudice, too. We want to work with the best people, no matter their background. So if you’re passionate about learning new things and keen to join our mission, you’ll fit right in.

Also, qualifications aren’t that important to us. If you’ve got great experience, and you’re great at articulating your thinking, we’d like to hear from you.

And because we believe that diverse teams build better products, we’d especially love to hear from you if you’re from an under-represented demographic.

Additional Information

For everyone, everywhere. We're people building money without borders — without judgement or prejudice, too. We believe teams are strongest when they are diverse, equitable and inclusive.

We're proud to have a truly international team, and we celebrate our differences.
Inclusive teams help us live our values and make sure every Wiser feels respected, empowered to contribute towards our mission and able to progress in their careers.

If you want to find out more about what it's like to work at Wise visit .

Keep up to date with life at Wise by following us on and .

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist - eCommerce

Lead Data Scientist - Marketing Science

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.