National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Full-Stack Data Scientist AI/ML

Ntrinsic Consulting
Preston
1 month ago
Applications closed

Related Jobs

View all jobs

Full Stack Developer

Full Stack Developer

Full Stack AI Engineer/ Computer Vision Engineer

AI Full-Stack Product Engineer

UKIC DV - Full Stack Software Engineer

Lecturer in Artificial Intelligence

Full-Stack Data Scientist AI/ML

Location:Hybrid – 40% on-site (client site, UK)

Security Clearance:Active SC or SC Eligible – Mandatory

Start Date:Immediate

Rate:negotiable with experience


You’ll play a critical role in building practical solutions to real-world data science challenges, including automating workflows, packaging models, and deploying them as microservices. The ideal candidate will be adept at developing end-to-end applications to serve AI/ML models, including those from platforms like Hugging Face, and will work with a modern AWS-based toolchain.


Your core responsibilities include:

  • Serve as the day-to-day liaison between Data Science and DevOps, ensuring effective deployment and integration of AI/ML solutions.
  • Assist DevOps engineers with packaging and deploying ML models, helping them understand AI-specific requirements and performance nuances.
  • Design, develop, and deploy standalone and micro-applications to serve AI/ML models, including Hugging Face Transformers and other pre-trained architectures.
  • Build, train, and evaluate ML models using services such as AWS SageMaker, Bedrock, Glue, Athena, Redshift, and RDS.
  • Develop and expose secure APIs using Apigee, enabling easy access to AI functionality across the
  • Manage the entire ML lifecycle—from training and validation to versioning, deployment, monitoring, and governance.
  • Build automation pipelines and CI/CD integrations for ML projects using tools like Jenkins and
  • Solve common challenges faced by Data Scientists, such as model reproducibility, deployment portability, and environment standardization.
  • Support knowledge sharing and mentorship across data Scientists teams, promoting a best- practice-first culture.


Essential skills:

  • Demonstrated experience deploying and maintaining AI/ML models in production
  • Hands-on experience with AWS Machine Learning and Data services: SageMaker, Bedrock, Glue, Kendra, Lambda, ECS Fargate, and Redshift.
  • Familiarity with deploying Hugging Face models (e.g., NLP, vision, and generative models) within AWS environments.
  • Ability to develop and host microservices and REST APIs using Flask, FastAPI, or equivalent
  • Proficiency with SQL, version control (Git), and working with Jupyter or RStudio
  • Experience integrating with CI/CD pipelines and infrastructure tools like Jenkins, Maven, and
  • Strong cross-functional collaboration skills and the ability to explain technical concepts to non- technical stakeholders.
  • Ability to work across cloud-based working experience in the following areas:
  • Deployment of ML Models or applications using DevOps pipelines.
  • Managing the entire ML lifecycle—from training and validation to versioning, deployment, monitoring, and governance.
  • Post-model deployment MLOps experience.
  • Building automation pipelines and CI/CD integrations for ML projects using tools such as Jenkins and Maven.
  • Solving common challenges faced by Data Scientists, including model reproducibility, deployment portability, and environment standardization.
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Find Hidden AI Jobs in the UK Using Professional Bodies like BCS, IET & the Turing Society

When it comes to job hunting in artificial intelligence (AI), most candidates head straight to traditional job boards, LinkedIn, or recruitment agencies. But what if there was a better way to find roles that aren’t advertised publicly? What if you could access hidden job leads, gain inside knowledge, or get referred by people already in the field? That’s where professional bodies and specialist AI communities come in. In this article, we’ll explore how UK-based organisations like BCS (The Chartered Institute for IT), IET (The Institution of Engineering and Technology), and the Turing Society can help you uncover AI job opportunities you won’t find elsewhere. We'll show you how to strategically use their directories, special-interest groups (SIGs), and CPD (Continuing Professional Development) events to elevate your career and expand your AI job search in ways most job seekers overlook.

How to Get a Better AI Job After a Lay-Off or Redundancy

Being made redundant or laid off can feel like the rug has been pulled from under you. Whether part of a wider company restructuring, budget cuts, or market shifts in tech, many skilled professionals in the AI industry have recently found themselves unexpectedly jobless. But while redundancy brings immediate financial and emotional stress, it can also be a powerful catalyst for career growth. In the fast-evolving field of artificial intelligence, where new roles and specialisms emerge constantly, bouncing back stronger is not only possible—it’s likely. In this guide, we’ll walk you through a step-by-step action plan for turning redundancy into your next big opportunity. From managing the shock to targeting better AI jobs, updating your CV, and approaching recruiters the smart way, we’ll help you move from setback to comeback.

AI Jobs Salary Calculator 2025: Work Out Your Market Value in Seconds

Why your 2024 salary data is already outdated “Am I being paid what I’m worth?” It is the question that creeps in whenever you update your CV, see a former colleague announce a punchy pay rise on LinkedIn, or notice a recruiter slide into your inbox with a role that looks eerily similar to your current one—only advertised at £20k more. Artificial intelligence moves faster than any other hiring market. New frameworks are open‑sourced overnight, venture capital floods specific niches without warning, & entire job titles—Prompt Engineer, LLM Ops Specialist—appear in the time it takes most industries to schedule a meeting. In that environment, salary guides published only a year ago already look like historical curiosities. To give AI professionals an up‑to‑the‑minute benchmark, ArtificialIntelligenceJobs.co.uk has built a simple yet powerful salary‑calculation formula. By combining three variables—role, UK region, & seniority—you can estimate a realistic 2025 salary band in less than a minute. This article explains that formula, unpacks the latest trends driving pay, & offers concrete steps to boost your personal market value over the next 90 days.