Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist - Monitoring & Alerting Infrastructure

TieTalent
Manchester
4 days ago
Create job alert

Overview

Data Scientist - Monitoring & Alerting Infrastructure: Our client is looking for a Data Scientist to help build and mature monitoring and alerting infrastructure, centralising efforts and enabling scalable, standardised approaches across multiple projects. This is a pivotal role for someone who thrives in autonomous environments and enjoys owning solutions from concept to deployment.

Responsibilities

  • Design and implement monitoring and alerting systems to ensure the reliability and accuracy of key datasets and processes.
  • Collaborate with teams to define relevant metrics, thresholds, and KPIs.
  • Build, maintain, and productionise machine learning and statistical models using Python and PySpark.
  • Deploy monitoring tools and models using AWS infrastructure.
  • Create scalable frameworks for future monitoring requirements across products and teams.
  • Investigate and troubleshoot anomalies in the data pipeline.
  • Promote data quality and monitoring best practices across the business.
  • Mentor junior team members and contribute to a culture of curiosity, rigour, and innovation.
  • Adhere to Company Policies and Procedures with respect to Security, Quality and Health & Safety.

About You / Qualifications

  • Proficiency in Python and SQL for analysis, model development, and data interrogation.
  • Experience in handling large datasets with PySpark and managing distributed data processing.
  • Comfortable deploying statistical or ML models into production environments.
  • Strong understanding of cloud infrastructure, preferably AWS.
  • A methodical, problem-solving mindset with high attention to detail.
  • Able to scope, define, and deliver complex solutions independently.
  • Comfortable working closely with non-technical stakeholders to define business-critical metrics.
  • Self-motivated, accountable, and keen to continuously learn and grow.
  • Previous experience building monitoring or data quality frameworks is highly desirable.

Benefits

  • Generous Time Off: 25 days of paid holiday, plus bank holidays. After two years, you can buy or sell up to 5 days of annual leave.
  • Life assurance and a workplace pension with employer contributions.
  • Bonus scheme that recognizes your hard work and contributions.
  • Cycle to Work Scheme.
  • Choice of equipment to suit you.
  • Learning & Growth: coaching, training budget, and support for ongoing development.
  • Giving Back: opportunities to support local charities.

Working Pattern

  • Hybrid working model with a Manchester office: office space, free parking, secure bike shed, good public transport links.
  • Split time between office and home with full equipment provided for home working (desk, screen, chair).
  • £100 annually to personalise your home workspace.
  • Flexible start and finish times.

Additional Details

  • Seniority level: Mid-Senior level
  • Employment type: Full-time
  • Job function: Engineering and Information Technology
  • Industries: Technology, Information and Internet


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist - Remote

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.