Data Scientist

SoCode Limited
Cambridge
20 hours ago
Create job alert

We are currently recruiting for a Contract Data Scientist to support an innovative engineering-focused organisation operating within a fast-paced R&D environment. This is an excellent opportunity for a hands-on data specialist with strong MATLAB expertise who enjoys working closely with engineering teams to drive product development through high-quality data analysis.

The Role
As a Contract Data Scientist, you will play a key role in supporting engineering development activities through advanced data analysis and tool development. You’ll be working with scientific and test-generated data, helping translate complex datasets into meaningful insights that directly inform product and application improvements.
This position requires someone confident working autonomously, enhancing existing analytical frameworks, and collaborating with multidisciplinary engineering teams.

Key Responsibilities

Develop, write, and maintain robust MATLAB analysis scripts and tools
Analyse complex datasets generated from scientific and engineering test environments
Utilise and enhance existing internally developed MATLAB scripts to support ongoing engineering development
Identify opportunities to optimise, refine, and improve current data analysis methodologies
Support Test and Applications Engineers with data interrogation, validation, and insight generation
Present analytical findings clearly to technical stakeholders
Operate effectively within ...

Related Jobs

View all jobs

Data Scientist - Imaging - Remote - Outside IR35

Data Scientist - Measurement Specialist

Data Scientist (Predictive Modelling) – NHS

Data Scientist, United Kingdom - BCG X

Data Scientist, United Kingdom - BCG X

Data Scientist, United Kingdom - BCG X

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.