Data Scientist

London
1 week ago
Applications closed

Related Jobs

View all jobs

Data Scientist - Imaging - Remote - Outside IR35

Data Scientist - Measurement Specialist

Data Scientist (Predictive Modelling) – NHS

Data Scientist, United Kingdom - BCG X

Data Scientist, United Kingdom - BCG X

Data Scientist, United Kingdom - BCG X

Data Scientist: Country Risk & Advanced Analytics

Join an integrated team of economists, political scientists, and computer scientists to shape the strategic decisions of the world's leading organizations.

How You'll Make an Impact:

Innovate: Prototype new approaches for extracting insights from structured and unstructured data.
Build: Design and optimize risk models for analytics and generative AI applications using proprietary NLP data.
Collaborate: Partner with cross-domain experts to turn non-technical ideas into scalable, interpretable research designs.
Deploy: Develop and maintain robust ML pipelines for both experimentation and production.Who You Are:

Technical Expert: You have substantial experience with Python or R, and are skilled in querying and analyzing big data.
NLP Specialist: You have a proven track record of developing and refining NLP models.
Clear Communicator: You can explain complex ML/NLP methodologies to non-technical stakeholders with ease.
Methodical: You are familiar with experiment tracking (DVC, Weights & Biases) and model evaluation metrics.Stand Out From the Crowd: Candidates with an advanced degree in ML/NLP, exposure to cloud platforms (AWS, Databricks, Snowflake), or experience in agile, fast-paced environments are highly encouraged to apply or share your updated CV to saisaranya.gummadi @

Randstad Technologies is acting as an Employment Business in relation to this vacancy

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.