Data Scientist - ML & AI Projects - Kent/Sussex Boarder

Royal Tunbridge Wells
1 year ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist - Measurement Specialist

Data Scientist - ML & AI projects - Kent - J12910
Competitive annual salary of between £50,000 and £65,000 dependent on experience
Hybrid working - West Kent office base (2 days a week currently, expected to increase to 3 days)

No Visa Sponsorship Available - All applicants must have full and indefinite right to work in the UK

Working with an exceptional employer, looking to recruit a highly skilled individual to join their dynamic and innovative Data Science team.

This role will give you the opportunity to leverage your expertise in data analysis and machine learning to drive actionable insights and contribute to the development of cutting-edge solutions that improve the health and well-being of their customers.

Working on some extremely exciting projects in the healthcare sector, using Generative AI and MLOps techniques to progress and develop your career in Data Science.

What you'll be doing:
• Gather and clean large volumes of structured and unstructured data from various sources.
• Apply statistical, machine learning and traditional and generative AI techniques to analyse data, identify patterns, and develop predictive models.
• Create visual representations of data to communicate insights and findings to non-technical stakeholders.
• Interpret data analysis results to provide actionable insights and recommendations for business decisions.
• Work closely with cross-functional teams to understand business needs, develop solutions, and implement data-driven strategies.
• Stay updated with the latest trends and advancements in data science, machine learning, and related technologies to improve methodologies and processes.
• Ensure compliance with data privacy regulations and ethical standards in handling sensitive information.

What you'll bring:
• Previous applied experience within a data science role.
• Demonstratable knowledge of extracting business value from data science using both quantitative and qualitative metrics.
• Strong mathematical and statistical background.
• An ability to understand and translate data into actionable insights for the business.
• Strong working knowledge of Python and data science packages such as Scikit learn, Keras, Tensor flow and PySpark.
• Good understanding of industry standard MLOps capabilities.
• Understanding of the financial industry, in particular insurance, would be advantageous.

If you're excited about the prospect of using data to make a meaningful difference in people's lives, we want to hear from you!

Alternatively, you can refer a friend or colleague by taking part in our fantastic referral schemes! If you have a friend or colleague who would be interested in this role, please refer them to us. For each relevant candidate that you introduce to us (there is no limit) and we place, you will be entitled to our general gift/voucher scheme.
Datatech is one of the UK's leading recruitment agencies in the field of analytics and host of the critically acclaimed event, Women in Data. For more information, visit our website: (url removed)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.