Data Scientist - Measurement Specialist

Victoria, Greater London
23 hours ago
Create job alert

Our client,an award winning SaaS organisation providing software solutions to the SME marketplace, is now seeking an experienced Data Scientist for a 12 month contract. You will be assisting in the company transition from correlation-based reporting to causal-based decision making, helping guide key marketing investment decisions.
Central London location, hybrid, with 3 days a week in the office.
Responsibilities

  • Forecasting: Build predictive models to simulate business outcomes under various economic and budgetary scenarios, acting as the "radar" for the marketing department.
  • Serve as the analyst lead for the Data Clean Room (DCR) strategy, specifically within Meta Advanced Analytics (AA)
  • SQL: Write and optimize advanced SQL queries
  • Learning Agenda & Causal Experimentation. Design and execute rigorous Conversion Lift Studies (CLS)and Brand Lift Studies (BLS).
    Skills
  • 3+ years of experience working in marketing science or data analytics teams.
  • B.Sc. Economics, Statistics, Mathematics or Data Science.
  • SQL: Advanced level. Ability to write complex CTEs, window functions, and optimize joins for distributed systems.
  • Experience with Marketing Mix Models (MMM). Understanding of Bayesian inference, Adstock transformations, and saturation curves.
    Useful experience
  • Hands-on experience with at least one major DCR environment.
  • Deep understanding of hypothesis testing, confidence intervals, p-values, and selection bias.
  • Understanding of AdTech and paid media mechanics, margin profiles.
    Benefits
  • Global company, long contract
  • Hybrid role
  • Free breakfast

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist - New

Data Scientist - Imaging - Remote - Outside IR35

Data Scientist - Workforce Modelling

Data Scientist/AI Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.