Data Scientist (GIS) – Remote

Noir Consulting
London
2 months ago
Create job alert

Data Scientist (GIS) – Remote

(Data Scientist, Data Science, Data Analyst, Data Analysis, ETL, Sparse data, Spatial data processing, QGIS, Spatial data storage, PostGIS, Jupyter notebooks, Python, Azure Data Factory, Cosmos DB, PostgreSQL, Statistics, Data Analytics, C# .NET, Data Scientist, Data Science, Data Analyst, Data Analysis)


Our client is a prestigious technology company who focus in the Insurance market. They have been a market leader for many years and their worldwide client base has never been stronger, with significant growth in the last 12 months. They are looking for a Data Scientist with a strong GIS focus to be responsible for analysing large datasets to extract actionable insights, build predictive models and develop data-driven solutions to complex problems. You will play a major part in data visualization, statistical analysis and collaboration with cross-functional teams to implement data-driven decision making.


We are seeking a GIS focused Data Scientist with experience of tabular data statistics using Python and Jupyter notebooks and strong QGIS and PostGIS for spatial data processing and spatial data storage respectively. You will need an understanding of data licensing and its implications, full ETL pipeline experience and full data lifecycle management knowledge.


Essential skills include ETL, Jupyter notebooks, Python, QGIS, PostGIS, strong Data Visualization and presentation, expertise in Data Science and Data Analysis and proficiency in Statistics and Data Analytics. Knowledge of Azure Data Factory, Cosmos DB, PostgreSQL and C#.NET is highly desirable, as is any experience in the Insurance industry. Excellent problem-solving and analytical skills and strong written and verbal communication skills are expected.


We are keen to hear from talented Data Scientist candidates from all backgrounds.


This is a truly amazing opportunity to work for a prestigious brand that will do wonders for your career. They invest heavily in training and career development; top performers are guaranteed a career path into senior and lead positions within 12 months.

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.