Data Scientist (Football Club)

Singular Recruitment
London
2 weeks ago
Create job alert

This is a unique opportunity to work at the cutting edge of AI, data technology, and elite football analytics. As a Data Scientist, you’ll join a collaborative, high-performing team with a culture rooted in creativity, innovation, and excellence.


In this role, you’ll design and deploy data models that power decision-making across every area of the club — from strategy, tactics, recruitment, and performance, to pre- and post-match analysis. You'll also play a key role in supporting the club’s commercial operations, including e-commerce and fan engagement.


If you're passionate about using advanced data science to drive real-world impact in sport, this is the role for you.


Key Responsibilities


  • Develop and apply statistical models and algorithms to analyse player performance, match outcomes, and tactical insights
  • Collect, clean, and process football-related data from diverse sources
  • Build clear, compelling visualizations and deliver insights to both technical and non-technical stakeholders
  • Collaborate with analysts, coaches, and performance staff to understand requirements and translate them into actionable data solutions
  • Stay up to date with advancements in sports analytics, machine learning, and data science methodologies


Your Background


  • 3+ years of industry experience as a Data Scientist, plus a strong academic foundation
  • Python Data Science Stack: Advanced proficiency in Python, including Pandas, NumPy and scikit-learn.
  • Statistical & Machine Learning Modelling: Experience with a variety of ML techniques (regression, classification, clustering, time-series forecasting)
  • Experience with deep learning frameworks such as Keras or PyTorch
  • Model Deployment: Proven ability to productionise models, including building and deploying APIs
  • Strong visualization and communication skills, with the ability to translate complex technical findings into actionable insights for coaches, analysts, and execs


Highly Desirable Skills


  • Football Analytics Experience: Familiarity with football-specific datasets (event, tracking, positional), and libraries like mplsoccer
  • Advanced MLOps & Modelling: Experience with the Vertex AI ecosystem, especially pipelines, and advanced techniques such as player valuation, tactical modelling, etc.
  • Bayesian Modelling: Knowledge of probabilistic programming (e.g., PyMC) for uncertainty-aware predictions
  • Stakeholder Collaboration: Demonstrated ability to work directly with stakeholders to scope, iterate, and deliver impactful solutions in fast-moving environments


What They Offer


  • A chance to work on real-world data that impacts elite football performance
  • Access to high-value datasets, sports science teams, and cross-disciplinary experts
  • A flexible hybrid working model (1 day per month in the London office)
  • The opportunity to grow within a digital-first team at a world-renowned football club
  • The satisfaction of applying your engineering skills in an environment where your work directly influences results on the pitch

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist - New

Data Scientist - Imaging - Remote - Outside IR35

Data Scientist - Workforce Modelling

Data Scientist/AI Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.