Data Scientist

Net Talent Partners
Glasgow
3 days ago
Create job alert
Overview

Department: Artificial Intelligence & Data Science


Reports to: Lead AI Scientist


This organisation is at the forefront of AI-driven automation, building advanced solutions that transform how accountancy, finance, and professional services firms operate. The focus is on combining mathematical rigour with practical AI innovation to deliver technology that enables businesses to work smarter, faster, and with greater accuracy.


As an AI Graduate Scientist, you will design, develop, and deploy cutting-edge AI solutions that push the boundaries of automation and document intelligence. You’ll work closely with a multidisciplinary team of mathematicians, engineers, and domain experts, applying modern techniques in NLP, computer vision, and machine learning to solve complex, real-world problems.


This role is ideal for someone with a strong mathematical foundation, a passion for AI research, and a desire to see their work deliver real business impact.


Key Responsibilities

  • Research & Development: Investigate and implement advanced AI/ML algorithms, with a focus on document intelligence, information retrieval, and data automation.
  • Product Innovation: Contribute to the development of a document intelligence platform using NLP and computer vision to extract, classify, and structure data from complex, unstructured sources.
  • Retrieval-Augmented Generation (RAG): Design and implement intelligent retrieval systems, exploring approaches such as GraphRAG and Google ScaNN to improve contextual accuracy.
  • Full-Stack AI Deployment: Build, test, and deploy AI-powered bots and web applications on Microsoft Azure, ensuring scalability, security, and performance.
  • Enterprise AI Integration: Develop Model Context Protocol (MCP) systems to integrate AI models with enterprise data sources for domain-specific AI interactions.
  • Explainable AI: Research and apply model interpretability techniques to ensure AI systems are transparent, reliable, and business-ready.
  • Continuous Learning: Stay up to date with cutting-edge AI research and evaluate new methods for practical application.

Skills & Qualifications

  • First-class degree (or equivalent) in Mathematics, Computer Science, Artificial Intelligence, or a related discipline.
  • Strong mathematical grounding, particularly in algebra, number theory, and statistics.
  • Proficiency in Python and experience with major ML frameworks such as PyTorch or TensorFlow.
  • Solid understanding of NLP, computer vision, and information retrieval.
  • Ability to translate theoretical models into practical, deployable solutions.
  • Experience with cloud platforms, ideally Microsoft Azure.
  • Knowledge of vector search, RAG pipelines, and document chunking strategies.
  • Familiarity with advanced similarity search or vector quantisation techniques.
  • Experience deploying AI applications in enterprise environments.
  • Interest in explainable AI and model interpretability.

What’s on Offer

  • The opportunity to work on high-impact AI projects solving real business problems.
  • A collaborative, research-driven culture that values both innovation and rigour.
  • Exposure to cutting-edge AI tools, techniques, and research.
  • Competitive salary and benefits.
  • A clear career path into senior research or engineering roles.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist - New

Data Scientist - Imaging - Remote - Outside IR35

Data Scientist - Workforce Modelling

Data Scientist/AI Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.