Data Scientist

Zensar Technologies
Stratford-upon-Avon
3 weeks ago
Create job alert
Talent Acquisition Executive - UK/Europe at Zensar Technologies

We are seeking an experienced Data Scientist to design, develop, and deploy advanced AI/ML models leveraging client pricing datasets. The ideal candidate will have a strong background in statistical modeling, machine learning, and data engineering, with proven experience in building scalable solutions for pricing optimization and predictive analytics.


Key Responsibilities

  • Design and implement AI/ML models for pricing optimization, elasticity analysis, and revenue forecasting.
  • Apply advanced algorithms (e.g., regression, tree-based models, deep learning) to large-scale pricing datasets.

Data Analysis & Feature Engineering

  • Perform exploratory data analysis (EDA) to identify patterns and anomalies in pricing data.
  • Develop robust feature engineering pipelines for model accuracy and interpretability.

Deployment & Integration

  • Collaborate with engineering teams to deploy models into production environments.
  • Ensure scalability, performance, and compliance with client requirements.

Stakeholder Collaboration

  • Work closely with pricing analysts, business teams, and client stakeholders to translate business objectives into data-driven solutions.
  • Present insights and recommendations through clear visualizations and reports.

Required Skills & Qualifications

Education: Degree in Data Science, Computer Science, Statistics, or related field.


Technical Expertise

  • Strong proficiency in Python, R, and ML libraries (e.g., scikit-learn, TensorFlow, PyTorch).
  • Experience with pricing analytics, predictive modeling, and optimization techniques.
  • Hands-on experience with SQL, big data platforms (Spark, Hadoop), and cloud services (AWS, Azure, GCP).
  • Deep understanding of pricing strategies, elasticity modeling, and revenue management.
  • Excellent communication and stakeholder management skills.

Preferred Qualifications

  • Experience in Insurance.
  • Familiarity with MLOps and CI/CD pipelines for ML models.
  • Knowledge of generative AI or advanced NLP techniques for pricing insights.

Seniority level: Mid-Senior level


Employment type: Full-time


Job function: Information Technology


Industries: IT Services and IT Consulting


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist - New

Data Scientist - Imaging - Remote - Outside IR35

Data Scientist - Workforce Modelling

Data Scientist/AI Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.