National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist

Uncapped
London
1 month ago
Create job alert

Hybrid role based in London

Role Overview

The Data Scientist role will be responsible for designing, developing, and implementing advanced AI and machine learning models, utilizing both traditional and emerging approaches to address complex business challenges. This position is well-suited for with a PhD / Masters or equivalent in Statistics, Machine Learning, or Artificial Intelligence with a passion for solving real-world problems and hands-on experience of using both traditional ML and cutting-edge Large Language Models in business settings. This is a high-impact role that blends hands-on model development with practical leadership in scaling ML/AI systems across the business.

This position reports to the Chief Risk Officer and collaborates closely with engineering, product, and risk teams to ensure robust and impactful solutions.

About Uncapped

Founded in 2019, Uncapped is a fintech company focused on providing working capital to SMEs in North America and Europe.

We leverage multiple data sources to make credit decisions faster, safer and more conveniently. We are working with the largest platforms in the world, including Amazon and Walmart, and strive to be the best alternative-lender globally.

What will you do ️

Model Development: Apply advanced machine learning and statistical methods to develop and implement models across diverse use cases, including credit, commercial, product, and operations, with a significant emphasis on credit risk. ML Ops Leadership: Define and execute an ML Ops framework to streamline model lifecycle management, including data ingestion, data transformation, model training, deployment, and monitoring. Collaborative Problem Solving: Work with commercial and product teams to align ML solutions with business goals, ensuring risk considerations are integrated into new products and customer segments. Performance Tracking: Continuously monitor model performance and develop strategies to enhance accuracy and relevance, incorporating lessons learned into future iterations. Tooling & Technology: Evaluate and implement best-in-class tools and platforms for ML Ops, ensuring scalability and compliance with industry standards.

Requirements

Who you are

Educational Background: PhD in Statistics, Machine Learning or Artificial Intelligence. Deep Experience: 3-4 years of experience in data science, including hands-on ML model development and production deployment after earning your PhD. ML & Statistical Expertise: Expert in traditional machine learning and statistical methods (, classification, regression, time series models), with deep expertise in modern deep learning approaches including transformers, attention mechanisms, and LSTMs, as well as solid experience working with LLMs and associated frameworks. High-growth Experience: Prior experience working in high-growth environments, ideally start-ups or scale-ups Coding Skills: Proficient in Python, SQL, and one of Pytorch, Tensorflow, Scikit-learn, with daily experience in writing, debugging, and optimising code. ML Ops Knowledge: Familiarity with tools like MLflow, Kubeflow, or Vertex AI, and experience implementing CI/CD pipelines for machine learning. Understanding of Financial Services: Financial Services understanding is a plus, ideally in a lending environment. Strong Communicator: Can engage both technical and non-technical stakeholders.

Benefits

What we offer

At Uncapped, our people make us successful. We are a start-up with big goals, and we work hard, so we want to give everyone the benefits they really want. We are continually adding to this list as new people join -- here are some of the things you can expect:

Unlimited holiday: we believe that well-rested and happy people make the best employees Competitive compensation plan Personal growth fund: Raise your game from great to spectacular Monthly recognition and awards: Celebrate wins big and small The opportunity to make a big impact every day on the lives of European and US entrepreneurs. Workspaces in Warsaw, London and Atlanta

We can only consider applications from candidates who are eligible to work in the UK without requiring visa sponsorship.

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 AI Recruitment Agencies in the UK You Should Know (2025 Job‑Seeker Guide)

Generative‑AI hype has translated into real hiring: Lightcast recorded +57 % year‑on‑year growth in UK adverts mentioning “machine learning”, “LLM” or “gen‑AI” during Q1 2025. Yet supply still lags. Roughly 18,000 core AI professionals work in the UK, but monthly live vacancies hover around 1,400–1,600. That mismatch makes specialist recruiters invaluable—opening stealth vacancies, advising on salary bands and fast‑tracking interview loops. But many tech agencies sprinkle “AI” on their website without an active desk. To save you time, we vetted 50 + consultancies and kept only those with: A registered UK head office (verified via Companies House). A named AI/Machine‑Learning or Data practice.

AI Jobs Skills Radar 2026: Emerging Frameworks, Languages & Tools to Learn Now

As the UK’s AI sector accelerates towards a £1 trillion tech economy, the job landscape is rapidly evolving. Whether you’re an aspiring AI engineer, a machine learning specialist, or a data-driven software developer, staying ahead of the curve means more than just brushing up on Python. You’ll need to master a new generation of frameworks, languages, and tools shaping the future of artificial intelligence. Welcome to the AI Jobs Skills Radar 2026—your definitive guide to the emerging AI tech stack that employers will be looking for in the next 12–24 months. Updated annually for accuracy and relevance, this guide breaks down the top tools, frameworks, platforms, and programming languages powering the UK’s most in-demand AI careers.

How to Find Hidden AI Jobs in the UK Using Professional Bodies like BCS, IET & the Turing Society

Stop Scrolling Job Boards and Start Tapping the Real AI Market Every week a new headline announces millions of pounds flowing into artificial-intelligence research, defence initiatives, or health-tech pilots. Read the news and you could be forgiven for thinking that AI vacancies must be everywhere—just grab your laptop, open LinkedIn, and pick a role. Yet anyone who has hunted seriously for an AI job in the United Kingdom knows the truth is messier. A large percentage of worthwhile AI positions—especially specialist or senior posts—never appear on public boards. They emerge inside university–industry consortia, defence labs, NHS data-science teams, climate-tech start-ups, and venture studios. Most are filled through referral or conversation long before a recruiter drafts a formal advert. If you wait for a vacancy link, you are already at the back of the queue. The surest way to beat that dynamic is to embed yourself in the professional bodies and grassroots communities where the work is conceived. The UK has a dense network of such organisations: the Chartered Institute for IT (BCS); the Institution of Engineering and Technology (IET) with its Artificial Intelligence Technical Network; the Alan Turing Institute and its student-driven Turing Society; the Royal Statistical Society (RSS); the Institution of Mechanical Engineers (IMechE) and its Mechatronics, Informatics & Control Group; public-funding engines like UK Research and Innovation (UKRI); and an ecosystem of Slack channels and Meetup groups that trade genuine, timely intel. This article is a practical, step-by-step guide to using those networks. You will learn: Why professional bodies matter more than algorithmic job boards Exactly which special-interest groups (SIGs) and technical networks to join How to turn CPD events into informal interviews How to monitor grant databases so you hear about posts months before they exist Concrete scripts, portfolio tactics, and outreach rhythms that convert visibility into offers Follow the playbook and you move from passive applicant to insider—the colleague who hears about a role before it is written down.