National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist

Uncapped
London
1 week ago
Create job alert

What will you do ️

Model Development: Apply advanced machine learning and statistical methods to develop and implement models across diverse use cases, including credit, commercial, product, and operations, with a significant emphasis on credit risk. ML Ops Leadership: Define and execute an ML Ops framework to streamline model lifecycle management, including data ingestion, data transformation, model training, deployment, and monitoring. Collaborative Problem Solving: Work with commercial and product teams to align ML solutions with business goals, ensuring risk considerations are integrated into new products and customer segments. Performance Tracking: Continuously monitor model performance and develop strategies to enhance accuracy and relevance, incorporating lessons learned into future iterations. Tooling & Technology: Evaluate and implement best-in-class tools and platforms for ML Ops, ensuring scalability and compliance with industry standards.

Requirements

Who you are

Educational Background: PhD in Statistics, Machine Learning or Artificial Intelligence. Deep Experience: 3-4 years of experience in data science, including hands-on ML model development and production deployment after earning your PhD. ML & Statistical Expertise: Expert in traditional machine learning and statistical methods (, classification, regression, time series models), with deep expertise in modern deep learning approaches including transformers, attention mechanisms, and LSTMs, as well as solid experience working with LLMs and associated frameworks. High-growth Experience: Prior experience working in high-growth environments, ideally start-ups or scale-ups Coding Skills: Proficient in Python, SQL, and one of Pytorch, Tensorflow, Scikit-learn, with daily experience in writing, debugging, and optimising code. ML Ops Knowledge: Familiarity with tools like MLflow, Kubeflow, or Vertex AI, and experience implementing CI/CD pipelines for machine learning. Understanding of Financial Services: Financial Services understanding is a plus, ideally in a lending environment. Strong Communicator: Can engage both technical and non-technical stakeholders.

Benefits

What we offer

At Uncapped, our people make us successful. We are a start-up with big goals, and we work hard, so we want to give everyone the benefits they really want. We are continually adding to this list as new people join -- here are some of the things you can expect:

Unlimited holiday: we believe that well-rested and happy people make the best employees Competitive compensation plan Personal growth fund: Raise your game from great to spectacular Monthly recognition and awards: Celebrate wins big and small The opportunity to make a big impact every day on the lives of European and US entrepreneurs. Workspaces in Warsaw, London and Atlanta

We can only consider applications from candidates who are eligible to work in the UK without requiring visa sponsorship.

Related Jobs

View all jobs

Data Scientist

Data Science Placement Programme

Data Science Placement Programme

Data Science Placement Programme

Data Science Placement Programme

Data Science Placement Programme

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better AI Job After a Lay-Off or Redundancy

Being made redundant or laid off can feel like the rug has been pulled from under you. Whether part of a wider company restructuring, budget cuts, or market shifts in tech, many skilled professionals in the AI industry have recently found themselves unexpectedly jobless. But while redundancy brings immediate financial and emotional stress, it can also be a powerful catalyst for career growth. In the fast-evolving field of artificial intelligence, where new roles and specialisms emerge constantly, bouncing back stronger is not only possible—it’s likely. In this guide, we’ll walk you through a step-by-step action plan for turning redundancy into your next big opportunity. From managing the shock to targeting better AI jobs, updating your CV, and approaching recruiters the smart way, we’ll help you move from setback to comeback.

AI Jobs Salary Calculator 2025: Work Out Your Market Value in Seconds

Why your 2024 salary data is already outdated “Am I being paid what I’m worth?” It is the question that creeps in whenever you update your CV, see a former colleague announce a punchy pay rise on LinkedIn, or notice a recruiter slide into your inbox with a role that looks eerily similar to your current one—only advertised at £20k more. Artificial intelligence moves faster than any other hiring market. New frameworks are open‑sourced overnight, venture capital floods specific niches without warning, & entire job titles—Prompt Engineer, LLM Ops Specialist—appear in the time it takes most industries to schedule a meeting. In that environment, salary guides published only a year ago already look like historical curiosities. To give AI professionals an up‑to‑the‑minute benchmark, ArtificialIntelligenceJobs.co.uk has built a simple yet powerful salary‑calculation formula. By combining three variables—role, UK region, & seniority—you can estimate a realistic 2025 salary band in less than a minute. This article explains that formula, unpacks the latest trends driving pay, & offers concrete steps to boost your personal market value over the next 90 days.

How to Present AI Models to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

In today’s competitive job market, AI professionals are expected to do more than just build brilliant algorithms—they must also explain them clearly to stakeholders who may have no technical background. Whether you're applying for a role as a machine learning engineer, data scientist, or AI consultant, your ability to articulate complex models in simple terms is fast becoming one of the most valued soft skills in interviews and on the job. This guide will help you master the art of public speaking for AI roles, offering tips on structuring presentations, designing effective slides, and using storytelling to make your work resonate with any audience.