Data Scientist

Careerwise
London
8 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist - Measurement Specialist

Data Scientist with Databricks Experience

Salary-up to £90K base + bonus + benefits

Location- Work from Home but accessible to travel to London when needed


Our client is an international company that requires a senior Data Scientist with experience in Azure Databricks, Knowledge Graph, Neo4J Graph Database, and RAG pipelines for LLM to join the team.


Job Description:

Responsibilities:

  • Develop and implement data models and algorithms to solve complex business problems.
  • Utilize Databricks to manage and analyse large datasets efficiently.
  • Collaborate with cross-functional teams to understand business requirements and deliver data-driven insights.
  • Design and build scalable data pipelines and ETL processes.
  • Perform data exploration, preprocessing, and feature engineering.
  • Conduct statistical analysis and machine learning model development.
  • Communicate findings and insights to stakeholders through data visualization and reports.
  • Stay current with industry trends and best practices in data science and big data technologies.

Requirements:

  • Proven experience as a Data Scientist or similar role.
  • Proficiency with Databricks and its ecosystem.
  • Strong programming skills in Python, R, or Scala.
  • Experience with big data technologies such as Apache Spark, Databricks.
  • Knowledge of SQL and experience with relational databases.
  • Familiarity with cloud platforms (e.g., AWS, Azure, Google Cloud).
  • Strong analytical and problem-solving skills.
  • Excellent communication and teamwork abilities.
  • Bachelor's degree in Data Science, Computer Science, Statistics, or a related field (or equivalent experience).

Preferred Qualifications:

  • Advanced degree (Master's or Ph.D.) in a relevant field.
  • Experience with machine learning frameworks (e.g., TensorFlow, PyTorch).
  • Knowledge of data visualization tools (e.g., Tableau, Power BI).
  • Familiarity with version control systems (e.g., Git).

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.