Data Scientist

Sprout.ai
London
10 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist- Consumer Behaviour

Data Science is the single largest team at Sprout.ai, and with good reason. We are at the heart of the company's continuing efforts to build innovative products, research new techniques for using Artificial Intelligence in claims automation, and push the boundaries of what our product can achieve.

As a fully remote and globally dispersed team, our Data Scientists bring together a diverse range of expertise and backgrounds; what unites us is a desire to learn, a mastery of our discipline, strong mathematical and statistical skills, and software engineering prowess. We typically specialise in Computer Vision, Natural Language Processing or Deep Learning.

Our Data Scientists are responsible for all aspects of the AI lifecycle, from understanding business problems, preparing training data, designing and building models, and deploying them into production. We work in cross-functional squads, so you will work collaboratively with other Data Scientists, Software Engineers, Product and Engagement Managers.

If you are a Data Scientist / Machine Learning Engineer who enjoys applying the latest AI techniques to real-world problems and enjoys working in a highly collaborative environment with a uniquely talented and globally dispersed team, we would love to meet you.

Responsibilities

  • Develop features for our state-of-the-art claims automation platform
  • Research, build and deploy machine learning algorithms and models to production within product teams
  • Provide technical guidance and input on the design and implementation of machine learning algorithms
  • Support with customer PoVs and onboarding
  • Understand business problems and product requirements and help translate these into technical solutions
  • Execute and deliver full AI/ML solutions from sourcing training data, design and implementing state-of-the-art machine learning models, testing, benchmark and product-driven research for model performance improvement, to shipping stable, tested, performant code in an agile environment.
  • Work closely with Product Managers to help shape the product roadmap
  • Contribute to Data Science strategy and the Data Science roadmap in conjunction with our Head of AI
  • Proactively seek to improve the way that Data Science operates at Sprout.ai
  • Support the education of the business and customers on how our Data Science teams work
  • Stay updated on the latest trends and advancements in Artificial Intelligence.

Skills, Knowledge, and Experience

  • Technical proficiency
    • Writes clean, testable, readable Python code (and other object-oriented languages)
    • Comfortable with PyTorch
    • Knowledge of Transformer-based models
    • Knowledge Large Language Models (non-essential)
  • Proven experience of having delivered successful Computer Vision or NLP projects into production 
  • Strong understanding of software development fundamentals, in particular deploying models to production.
  • Demonstrate expertise in deep learning for computer vision, natural language processing, reinforcement learning etc
  • Displays in depth knowledge in machine learning best practices, scalable training and deployment, model introspection and evaluation
  • Strong fundamentals in Mathematics, Statistics and Data Analysis
  • Experience working in an Agile environment and knowledge of how Agile methodologies can be applied to Data Science teams in terms of process, practice, team culture and the delivery of work
  • Ability to convert vague customer requirements or business challenges into well-defined machine learning solutions
  • We are using many technologies day to day such as various AWS services, GCP, Kubernetes, Ray Serve, Kubeflow, and ReTool. Any experience in these areas would be a bonus.

And here's why you should apply...

  • Work alongside a truly world-class team of Data Scientists, applying the latest AI research to real-world problems
  • Choice-first flexible working - we offer fully remote or hybrid-working options
  • Strong salaries which are benchmarked annually
  • Generous share options - every single member of our team has shares in Sprout
  • Location-specific benefits - for UK Sprouts, this includes Bupa private medical and dental insurance, 28 days of annual leave (plus bank holidays), Learning & Development budget.
  • A culture built aroundvaluesof Growth, Ownership, Innovation and Collaboration.

About Sprout.ai

Sprout.ai was established in London, UK in 2018 with a mission to help people in their time of need when making an insurance claim. Inefficient claims processing for the insurer meant that customer experience was suffering and people were losing faith in their insurance policies. The average insurance customer was having to wait over 25 days to receive an outcome on their claim, often in times of vulnerability.

The barriers to rapid claims settlement were clear; understanding of unstructured data, complexity and volume of decision making, legacy systems and processes.

Sprout.ai’s patented claims automation platform solves these challenges, and has already delivered instant claims settlement on millions of insurance claims around the world. Our proprietary AI products can automate every step of the claims journey: extracting and enhancing relevant claims data, cross-checking this with policies and providing recommendations to conclude a claim in near real-time. Our tools are allowing claims handlers to spend more time with customers, where human touch and empathy can make the most difference to their customers.

Leading VCs saw our company vision to ‘make every claim better’ and have supported our growth journey. This includes our $11M Series A led by Octopus Ventures in 2021 and in total we have raised over $20M. 

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Ways AI Pros Stay Inspired: Boost Creativity with Side Projects, Hackathons & More

In the rapidly evolving world of Artificial Intelligence (AI), creativity and innovation are critical. AI professionals—whether data scientists, machine learning engineers, or research scientists—must constantly rejuvenate their thinking to solve complex challenges. But how exactly do these experts stay energised and creative in their work? The answer often lies in a combination of strategic habits, side projects, hackathons, Kaggle competitions, reading the latest research, and consciously stepping out of comfort zones. This article will explore why these activities are so valuable, as well as provide actionable tips for anyone looking to spark new ideas and enrich their AI career. Below, we’ll delve into tried-and-tested strategies that AI pros employ to drive innovation, foster creativity, and maintain an inspired outlook in an industry that can be both exhilarating and daunting. Whether you’re just starting your AI journey or you’re an experienced professional aiming to sharpen your skills, these insights will help you break out of ruts, discover fresh perspectives, and bring your boldest ideas to life.

Top 10 AI Career Myths Debunked: Key Facts for Aspiring Professionals

Artificial Intelligence (AI) is one of the most dynamic and rapidly growing sectors in technology today. The lure of AI-related roles continues to draw a diverse range of job seekers—from seasoned software engineers to recent graduates in fields such as mathematics, physics, or data science. Yet, despite AI’s growing prominence and accessibility, there remains a dizzying array of myths surrounding careers in this field. From ideas about requiring near-superhuman technical prowess to assumptions that machines themselves will replace these jobs, the stories we hear sometimes do more harm than good. In reality, the AI job market offers far more opportunities than the alarmist headlines and misconceptions might suggest. Here at ArtificialIntelligenceJobs.co.uk, we witness firsthand the myriad roles, backgrounds, and success stories that drive the industry forward. In this blog post, we aim to separate fact from fiction—taking the most pervasive myths about AI careers and debunking them with clear, evidence-based insights. Whether you are an established professional considering a career pivot into data science, or a student uncertain about whether AI is the right path, this article will help you gain a realistic perspective on what AI careers entail. Let’s uncover the truth behind the most common myths and discover the actual opportunities and realities you can expect in this vibrant sector.

Global vs. Local: Comparing the UK AI Job Market to International Landscapes

How to navigate salaries, opportunities, and work culture in AI across the UK, the US, Europe, and Asia Artificial Intelligence (AI) has evolved from a niche field of research to an integral component of modern industries—powering everything from chatbots and driverless cars to sophisticated data analytics in finance and healthcare. The job market for AI professionals is consequently booming, with thousands of new positions posted each month worldwide. In this blog post, we will explore how the UK’s AI job market compares to that of the United States, Europe, and Asia, delving into differences in job demand, salaries, and workplace culture. Additionally, we will provide insights for candidates considering remote or international opportunities. Whether you are a freshly qualified graduate in data science, an experienced machine learning engineer, or a professional from a parallel domain looking to transition into AI, understanding the global vs. local landscape can help you make an informed decision about your career trajectory. As the demand for artificial intelligence skills grows—and borders become more porous with hybrid and remote work—the possibilities for ambitious job-seekers are expanding exponentially. This article will offer a comprehensive look at the various regional markets, exploring how the UK fares in comparison to other major AI hubs. We’ll also suggest factors to consider when choosing where in the world to work, whether physically or remotely. By the end, you’ll have a clearer picture of the AI employment landscape, and you’ll be better prepared to carve out your own path.