Data Scientist

Ageas Insurance Limited
Eastleigh
1 year ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist - Measurement Specialist

Job Title:Data Scientist Location:Remote with c. Quarterly travel to team eventsSalary:Competitive/Dependent on ExperienceData Scientist (open to Data Scientists, Senior Data Scientists, and Lead/Principal Data Scientists)

Insurance is a dynamic industry, offering fantastic opportunities for Data Scientists to tackle a variety of different challenges, using diverse data sources, analytical and modelling techniques. Ageas is a large Motor and Household insurer, meaning we play a key role in helping ordinary people protect their lifestyles and livelihoods when the worst happens. We have lots of data to work with and a wide variety of complex problems to solve.Data Science at AgeasOur Data Science team supports teams across the business to answer interesting questions such as:How can we identify fraudulent claims and disrupt organised crime?How much does it cost to repair a car after an accident or fix a home after a weather event?How can we best leverage Deep Learning and Generative AI models to maximise the potential of vast amounts of unstructured data, including calls, documents, and images?How do dynamic events (e.g., inflation, heatwaves, storms) and long-term trends (e.g., climate change, digitalisation) impact our business and our customers?How can we understand our customers better than anyone else so that we can consistently deliver what they want?At Ageas, we are inv...

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.