Computational Biology & Machine Learning Scientist

Skills Alliance
Glasgow
7 months ago
Applications closed

Related Jobs

View all jobs

Principal/Senior Data Scientist

Principal/Senior Data Scientist

Principal/Senior Data Scientist

Data Scientist Biologicals Research

Data Scientist Biologicals Research

Vice President, Head of Discovery Data Science

Computational Scientist – Machine Learning & Immunology & Biologics

A cutting-edge biotech organization is seeking highly motivatedComputational Scientiststo support the mission of decoding and engineering the immune system. The role focuses on developing advancedmachine learning and statistical modelsto analyze complex biological data, particularly immune repertoires and multimodal datasets.


About the Role

As part of a collaborative Computational Biology team, you will:

  • Design and implement machine learning models—particularlylanguage models, diffusion models, or graph neural networks—tailored to biomedical challenges.
  • Build novel computational methods for interpretingbiological sequences and structural data.
  • Customize existing tools and develop new ones for integrative analysis and visualization oflarge-scale systems immunology data.
  • Drive ML-based pipelines fordiagnostic or therapeutic design.
  • Benchmark computational methods and optimize performance across datasets.
  • Lead or contribute tocollaborative projectsspanning academic, clinical, and industry domains.


Required Qualifications

  • PhD (or MSc with equivalent experience) inComputational Biology, Bioinformatics, Computer Science, Statistics, Physics, or related quantitative discipline.
  • Strong background inmachine learning and statistical modeling, with a demonstrated ability to solve complex biological problems.
  • Proven track record of scientific productivity (e.g., peer-reviewed publications).
  • Hands-on experience indata handling, visualization, and biological data analysis.
  • Proficient inPython, familiar withsoftware development best practices.
  • Practical experience withTensorFlowand/orPyTorch.


Preferred Qualifications

  • 3+ years post-graduate experience in academia or biotech/pharma, applyingML/AI to biological datasets.
  • Prior exposure toimmunology, especiallyTCR/BCR repertoire analysis, or experience with protein design & or biologics.
  • Deep expertise in at least one of the following areas:
  • Language modelsfor sequence analysis
  • Diffusion modelsin molecular design
  • Graph MLin biomedical networks
  • Experience withGPU computing (cloud or HPC clusters).

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.