Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Computational Biology & Machine Learning Scientist

Skills Alliance
Glasgow
6 months ago
Applications closed

Related Jobs

View all jobs

Senior / Principal Machine Learning Scientist

Research Fellow: Machine Learning for Multi-scale, X-ray Mapping of the Human Brain

Team Lead - Computer Vision

Applied Data Scientist (Research Engineer – Digital Technologies)*

Postdoctoral Fellow- Computational Biology and Machine Learning

Postdoctoral Fellow- Computational Biology and Machine Learning

Computational Scientist – Machine Learning & Immunology & Biologics

A cutting-edge biotech organization is seeking highly motivatedComputational Scientiststo support the mission of decoding and engineering the immune system. The role focuses on developing advancedmachine learning and statistical modelsto analyze complex biological data, particularly immune repertoires and multimodal datasets.


About the Role

As part of a collaborative Computational Biology team, you will:

  • Design and implement machine learning models—particularlylanguage models, diffusion models, or graph neural networks—tailored to biomedical challenges.
  • Build novel computational methods for interpretingbiological sequences and structural data.
  • Customize existing tools and develop new ones for integrative analysis and visualization oflarge-scale systems immunology data.
  • Drive ML-based pipelines fordiagnostic or therapeutic design.
  • Benchmark computational methods and optimize performance across datasets.
  • Lead or contribute tocollaborative projectsspanning academic, clinical, and industry domains.


Required Qualifications

  • PhD (or MSc with equivalent experience) inComputational Biology, Bioinformatics, Computer Science, Statistics, Physics, or related quantitative discipline.
  • Strong background inmachine learning and statistical modeling, with a demonstrated ability to solve complex biological problems.
  • Proven track record of scientific productivity (e.g., peer-reviewed publications).
  • Hands-on experience indata handling, visualization, and biological data analysis.
  • Proficient inPython, familiar withsoftware development best practices.
  • Practical experience withTensorFlowand/orPyTorch.


Preferred Qualifications

  • 3+ years post-graduate experience in academia or biotech/pharma, applyingML/AI to biological datasets.
  • Prior exposure toimmunology, especiallyTCR/BCR repertoire analysis, or experience with protein design & or biologics.
  • Deep expertise in at least one of the following areas:
  • Language modelsfor sequence analysis
  • Diffusion modelsin molecular design
  • Graph MLin biomedical networks
  • Experience withGPU computing (cloud or HPC clusters).

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.