Research Scientist (Machine Learning), London London

Apam 91
London
6 months ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Scientist

Senior Machine Learning Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist Research Engineer

Data Scientist, Machine Learning Engineer, Data Analyst, Data Engineer, AI Engineer, Business Intelligence Analyst, Data Architect, Analytics Engineer, Research Data Scientist, Statistician, Quantitative Analyst, ML Ops Engineer, Applied Scientist, Insigh

Research Scientist, Machine Learning, London


Isomorphic Labs is a new Alphabet company that is reimagining drug discovery through a computational- and AI-first approach.


We are on a mission to accelerate the speed, increase the efficacy and lower the cost of drug discovery. You'll be working at the cutting edge of the new era of 'digital biology' to deliver a transformative social impact for the benefit of millions of people.


Come and be part of a multi-disciplinary team driving groundbreaking innovation and play a meaningful role in contributing towards us achieving our ambitious goals, while being a part of an inspiring, collaborative and entrepreneurial culture.


Your impact


As a Research Scientist in machine learning (ML), you will play an exciting role in building greenfield machine learning based models and algorithms that will power our platform to transform the drug discovery world as we know it.


Working in a highly creative, fast-paced and interdisciplinary environment, you will be partnering with leading engineers and scientists to conceive, design, and develop cutting edge machine learning algorithms to unlock new modelling and predictive power which will be critical to the organisation’s success. You will draw upon your existing deep research experience whilst learning from those around you, to apply novel techniques and ideas to newly encountered computational biology and chemistry problems.


Depending on your experience:


You will create and lead projects, bringing together a variety of disciplined scientists and engineers to pursue some of the most ambitious modelling problems with deep learning - as well as providing technical mentorship and people management for others in the ML community at Isomorphic Labs


You will be instrumental in leading greenfield machine learning based research projects, building the models, and algorithms that will power our platform to transform the drug discovery world as we know it.


What you will do



  • Contribute to our research directions in machine learning by using your extensive knowledge of the field to apply world-leading ML algorithms to drug discovery.
  • Identify and create novel ML techniques and the required data to train.
  • Develop the architectures and training algorithms of machine learning models.
  • Analyse and tune experimental results to inform future experimental directions.
  • Implement and scale training and inference engineering frameworks.
  • Report and present research findings and developments clearly and efficiently, to both other ML scientists and scientists of different disciplines.
  • Iterate collaboratively with scientists and domain experts, sharing your own domain experience.
  • Suggest and engage in team collaborations to meet ambitious research goals.
  • Depending on your experience:
  • Provide technical mentorship and guidance to the ML research community, advising on projects, and shaping our research roadmap based on your deep technical expertise.
  • Provide developmental support to other ML research scientists.
  • Create, lead, and run ML research projects, fostering collaborative and diverse teams to solve high priority modelling problems.Cultivate a diverse and inclusive research culture.

Skills and qualifications


Essential



  • PhD or equivalent practical experience in a technical field.
  • A proven track record in machine learning using deep learning techniques, including designing new architectures, hands-on experimentation, analysis, and visualisation.
  • Strong knowledge of linear algebra, calculus and statistics.
  • Experience using ML frameworks such as JAX, PyTorch, or TensorFlow, and scientific software such as NumPy, SciPy, or Pandas.
  • A passion for applying ML research to real world problems.
  • Depending on your experience: project supervision, leadership, or management.

Nice to have



  • PhD in machine learning or computer science.
  • Relevant research experience to the position such as post doctoral roles, a proven track record of publications, or contributions to machine learning codebases.
  • Experience working in a scientific environment across disciplines (particularly biology, chemistry, physics).
  • Experience working with biological or chemical data and biological or chemistry software.
  • Experience working with real-world datasets.
  • Experience with ML on accelerators.
  • Experience in any of: large scale deep learning, generative models, graph neural networks, deep learning for drug discovery, deep learning for computer vision, 3D graphics/robotics, real-world applied RL.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.