Research Scientist (Machine Learning), London London

Apam 91
London
5 months ago
Applications closed

Related Jobs

View all jobs

Research Scientist | Diffusion Modelling | Python | PyTorch | Machine Learning | Generative Modelling | Hybrid, London

Research Scientist | Diffusion Modelling | Python | PyTorch | Machine Learning | Generative Modelling | Hybrid, London

Machine Learning Researcher

Machine Learning Researcher

Post-Doctoral Research Associate

Senior Research Associate in Machine Learning for Medical Imaging and Molecular Prediction

Research Scientist, Machine Learning, London


Isomorphic Labs is a new Alphabet company that is reimagining drug discovery through a computational- and AI-first approach.


We are on a mission to accelerate the speed, increase the efficacy and lower the cost of drug discovery. You'll be working at the cutting edge of the new era of 'digital biology' to deliver a transformative social impact for the benefit of millions of people.


Come and be part of a multi-disciplinary team driving groundbreaking innovation and play a meaningful role in contributing towards us achieving our ambitious goals, while being a part of an inspiring, collaborative and entrepreneurial culture.


Your impact


As a Research Scientist in machine learning (ML), you will play an exciting role in building greenfield machine learning based models and algorithms that will power our platform to transform the drug discovery world as we know it.


Working in a highly creative, fast-paced and interdisciplinary environment, you will be partnering with leading engineers and scientists to conceive, design, and develop cutting edge machine learning algorithms to unlock new modelling and predictive power which will be critical to the organisation’s success. You will draw upon your existing deep research experience whilst learning from those around you, to apply novel techniques and ideas to newly encountered computational biology and chemistry problems.


Depending on your experience:


You will create and lead projects, bringing together a variety of disciplined scientists and engineers to pursue some of the most ambitious modelling problems with deep learning - as well as providing technical mentorship and people management for others in the ML community at Isomorphic Labs


You will be instrumental in leading greenfield machine learning based research projects, building the models, and algorithms that will power our platform to transform the drug discovery world as we know it.


What you will do



  • Contribute to our research directions in machine learning by using your extensive knowledge of the field to apply world-leading ML algorithms to drug discovery.
  • Identify and create novel ML techniques and the required data to train.
  • Develop the architectures and training algorithms of machine learning models.
  • Analyse and tune experimental results to inform future experimental directions.
  • Implement and scale training and inference engineering frameworks.
  • Report and present research findings and developments clearly and efficiently, to both other ML scientists and scientists of different disciplines.
  • Iterate collaboratively with scientists and domain experts, sharing your own domain experience.
  • Suggest and engage in team collaborations to meet ambitious research goals.
  • Depending on your experience:
  • Provide technical mentorship and guidance to the ML research community, advising on projects, and shaping our research roadmap based on your deep technical expertise.
  • Provide developmental support to other ML research scientists.
  • Create, lead, and run ML research projects, fostering collaborative and diverse teams to solve high priority modelling problems.Cultivate a diverse and inclusive research culture.

Skills and qualifications


Essential



  • PhD or equivalent practical experience in a technical field.
  • A proven track record in machine learning using deep learning techniques, including designing new architectures, hands-on experimentation, analysis, and visualisation.
  • Strong knowledge of linear algebra, calculus and statistics.
  • Experience using ML frameworks such as JAX, PyTorch, or TensorFlow, and scientific software such as NumPy, SciPy, or Pandas.
  • A passion for applying ML research to real world problems.
  • Depending on your experience: project supervision, leadership, or management.

Nice to have



  • PhD in machine learning or computer science.
  • Relevant research experience to the position such as post doctoral roles, a proven track record of publications, or contributions to machine learning codebases.
  • Experience working in a scientific environment across disciplines (particularly biology, chemistry, physics).
  • Experience working with biological or chemical data and biological or chemistry software.
  • Experience working with real-world datasets.
  • Experience with ML on accelerators.
  • Experience in any of: large scale deep learning, generative models, graph neural networks, deep learning for drug discovery, deep learning for computer vision, 3D graphics/robotics, real-world applied RL.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.