Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Bioinformatic Software Engineer

York Place
5 months ago
Applications closed

Related Jobs

View all jobs

Senior MLOps Engineer

Senior MLOps Engineer

Senior MLOps Engineer

Machine Learning Manager, London

Data Scientist

Data Scientist

Join an exciting biotech start-up in Edinburgh that’s developing next-generation technology relating to RNA sequencing, bioinformatics, and diagnostic development. Backed by academic expertise and driven by a mission to advance precision medicine, this agile team is developing tools to transform how RNA is discovered and analysed. As the company scales, it’s looking for a Bioinformatic Software Engineer to lead the build-out of cloud infrastructure and analysis pipelines critical to its technology platform.

This is an opportunity to join a growing, cross-functional team working on meaningful challenges in biology and data science, where your ideas and engineering skills will have a direct impact on product development and scientific discovery.

Bioinformatic Software Engineer responsibilities

Design, develop, optimise, and maintain cloud computing environments for bioinformatic data processing.

Build scalable, well-documented data analysis pipelines for long-read RNA sequencing workflows.

Develop and implement logging, reporting, and data archiving systems to support reproducible research.

Lead software engineering best practices, including testing, version control, deployment, and documentation.

Generate visualisations and reports to communicate key findings from complex transcriptomic datasets.

Collaborate closely with biologists, data scientists, and product stakeholders across the business.

Bioinformatic Software Engineer requirements:

Proven software engineering and DevOps experience within a research or R&D setting.

Strong understanding of sequencing data analysis, particularly read alignment and variant calling algorithms.

Degree educated in Computer Science, Bioinformatics, or a related field.

At least 3 years' relevant experience, ideally with RNAseq data and associated tool development.

Solid programming skills in object-oriented languages and scripting languages (e.g. Python, Perl, Bash).

Experience with software quality assurance practices such as version control, testing, and validation.

Desirable experience:

Commercial experience in a software or biotech setting.

Cloud computing experience (e.g. AWS, GCP, or Azure).

Familiarity with Unix/Linux systems.

Knowledge of transcriptomic technologies such as Illumina, PacBio, or Nanopore.

Understanding of transcriptome annotation and the impact of alternative splicing.

Skills in R, C++, or similar for statistical analysis and visualisation.

Personal Attributes:

Curious and proactive, with a desire to learn and ask questions.

Strong communicator, able to collaborate across disciplines.

Thoughtful problem-solver with a strategic mindset.

Open, respectful, and team-oriented in working style.

This is a rare chance to join a well-supported start-up at an exciting stage of growth. You will be working on complex scientific problems with a direct line to product impact, in a collaborative environment where your contributions will shape the company’s direction and technology.

£Comp + company benefits

Bioinformatics/Software Engineering/RNA Seq/Python

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.