Technical Lead - Software Engineer (Full Stack) Bristol

Bristol
11 months ago
Applications closed

Related Jobs

View all jobs

Lead Data Scientist

Data Science Lead / Manager

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Job Title: Technical Lead (Software Engineer) (Full stack)- Python, PySpark, HPC
Salary: £100,000 - £130,000 | Location: Bristol, UK (Hybrid)

About the Company

My client is a pioneering InsurTech specialising in cyber reinsurance, delivering advanced analytic's and underwriting solutions that transform cyber risk management. Their skilled, collaborative team thrives on data science and engineering innovation.

The Role: Technical Lead

We're seeking a hands-on Technical Lead to drive platform development, build and lead a high-performing engineering team, and integrate advanced risk modelling into their cyber reinsurance platform. This role requires 10+ years' experience in software engineering, including 5+ years in leadership, preferably in insurance or financial services.

Key Responsibilities

Platform Development: Architect and develop acyber reinsurance platform, incorporating:
Reinsurance submission ingestion, policy administration, cyber risk modelling, portfolio optimisation, and advanced reporting.
Team Leadership: Build and manage a high-performance engineering team across HPC, data engineering, and web development.
Collaboration: Work closely with data science and modelling teams to integrate analytical models.
Scaling Strategy: Expand the platform across new business lines.
Hands-On Contribution: Remain actively involved in the codebase, solving technical challenges and mentoring the team.

Qualifications & Skills

10+ years in software engineering, you must be experienced across the Full stack both Front and Back End with 5+ years in leadership (preferably in insurance).
Strong Python and PySpark skills, plus HPC, large-scale data engineering, and full-stack development.
Experience with machine learning, cloud platforms (AWS, GCP, Azure), DevOps tools (Docker, Terraform, Kubernetes), and data lakehouses (Databricks).
Proven success in building and scaling engineering teams and aligning initiatives with business goals.

Why Join?

Lead a cutting-edge team in cyber reinsurance.
Shape the future of risk management with advanced analytics.
Work in a highly collaborative, innovative environment.

How to Apply

Send your CV to to explore this opportunity

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.