Systematic Macro Quantitative Researcher

Undisclosed
1 year ago
Applications closed

Related Jobs

View all jobs

MSc Data Science and Artificial Intelligence

Data Science Lead

Data Scientist

Senior Data Scientist - Payments Operations

Senior Data Science Analyst - Shipping

Senior Machine Learning Engineer

Our client, a globally established and highly prestigious multi-platform Hedge Fund, are seeking a Systematic Macro Quant Researcher to join a newly created team within their business. In this dynamic and collaborative role, you will be responsible for developing and implementing cutting-edge quantitative models and strategies across global macro markets and asset classes. You will work closely with world-class researchers, portfolio managers, and technologists to identify and capitalize on inefficiencies in a wide range of asset classes, including equity indexes, fixed income, rates, commodities and FX. You will also help to systematise processes across teams, and build out the systematic infrastructure within the business.Key Responsibilities:Quantitative Research & Strategy Development: Conduct rigorous quantitative research to identify market inefficiencies and develop systematic trading strategies. Utilize statistical, econometric, and machine learning techniques to model macroeconomic relationships and forecast asset prices.Data Analysis & Signal Generation: Analyse large and complex datasets, including macroeconomic indicators, market prices, and alternative data sources, to extract predictive signals. Employ advanced data science methodologies to enhance the robustness and accuracy of models.Model Implementation & Optimization: Collaborate with the technology and trading teams to build and implement quantitative infrastructure, models and strategies in a live trading environment. Continuously optimize and refine models to adapt to changing market conditions.Risk Management: Work closely with risk management teams to assess and manage the risks associated with trading strategies. Develop risk models that account for various market scenarios and stress conditions.Requirements:Strong academic background: Ph.D. or Master's degree in a quantitative discipline such as Economics, Finance, Mathematics, Statistics, Computer Science, or a related field.Strong programming skills in Python, R, or a similar language, and the ability to write clean code.Experience with statistical analysis, econometrics, and machine learning techniques.Proficiency in working with large datasets and data analysis tools.Familiarity with financial markets and economic theory.Proven track record of developing and implementing successful quantitative trading strategies, preferably within a global macro context.3-5 years’ experience in a high-performance trading environment, such as a hedge fund, proprietary trading firm, or investment bank.Due to demand, we are advertising this role anonymously. If you would prefer to speak to someone before submitting a CV, please send a blank application to the role and someone will be in touch to discuss. We can only respond to highly qualified candidates.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.