Systematic Macro Quantitative Researcher

Undisclosed
2 months ago
Applications closed

Related Jobs

View all jobs

Lead Data Engineer

Application Architect

Account Executive Enterprise EU - German

Lead Data Engineer

Head of Sales

Our client, a globally established and highly prestigious multi-platform Hedge Fund, are seeking a Systematic Macro Quant Researcher to join a newly created team within their business. In this dynamic and collaborative role, you will be responsible for developing and implementing cutting-edge quantitative models and strategies across global macro markets and asset classes. You will work closely with world-class researchers, portfolio managers, and technologists to identify and capitalize on inefficiencies in a wide range of asset classes, including equity indexes, fixed income, rates, commodities and FX. You will also help to systematise processes across teams, and build out the systematic infrastructure within the business.Key Responsibilities:Quantitative Research & Strategy Development: Conduct rigorous quantitative research to identify market inefficiencies and develop systematic trading strategies. Utilize statistical, econometric, and machine learning techniques to model macroeconomic relationships and forecast asset prices.Data Analysis & Signal Generation: Analyse large and complex datasets, including macroeconomic indicators, market prices, and alternative data sources, to extract predictive signals. Employ advanced data science methodologies to enhance the robustness and accuracy of models.Model Implementation & Optimization: Collaborate with the technology and trading teams to build and implement quantitative infrastructure, models and strategies in a live trading environment. Continuously optimize and refine models to adapt to changing market conditions.Risk Management: Work closely with risk management teams to assess and manage the risks associated with trading strategies. Develop risk models that account for various market scenarios and stress conditions.Requirements:Strong academic background: Ph.D. or Master's degree in a quantitative discipline such as Economics, Finance, Mathematics, Statistics, Computer Science, or a related field.Strong programming skills in Python, R, or a similar language, and the ability to write clean code.Experience with statistical analysis, econometrics, and machine learning techniques.Proficiency in working with large datasets and data analysis tools.Familiarity with financial markets and economic theory.Proven track record of developing and implementing successful quantitative trading strategies, preferably within a global macro context.3-5 years’ experience in a high-performance trading environment, such as a hedge fund, proprietary trading firm, or investment bank.Due to demand, we are advertising this role anonymously. If you would prefer to speak to someone before submitting a CV, please send a blank application to the role and someone will be in touch to discuss. We can only respond to highly qualified candidates.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Best AI Books for UK Job Seekers: Boost Your Artificial Intelligence Career in 2025

The field of Artificial Intelligence (AI) is advancing at a phenomenal pace, and the demand for skilled professionals in the UK job market—and globally—has never been higher. Whether you’re a newcomer looking to break into the industry or a seasoned professional wanting to future-proof your skill set, reading the right books can make all the difference. From foundational texts that build core understanding to more advanced works diving into cutting-edge technologies, these resources will equip you with the knowledge and insights needed to succeed in AI-related roles. In this comprehensive blog post, we’ll explore ten must-read books for job seekers eager to stand out in a competitive AI recruitment landscape. We’ll examine what each book brings to the table, how it can help you refine both your theoretical and practical skills, and why it’s relevant to your career development. By the end, you’ll have a reading list guaranteed to strengthen your CV and your capabilities, giving you a competitive edge as you carve out a successful AI career.

Navigating AI Career Fairs Like a Pro: Preparing Your Pitch, Questions to Ask, and Follow-Up Strategies to Stand Out

The field of Artificial Intelligence (AI) is growing at an astonishing pace, offering a wealth of opportunities for talented professionals. From machine learning engineers and data scientists to natural language processing (NLP) specialists and computer vision experts, the demand for skilled AI practitioners continues to surge in the UK and globally. AI career fairs present a unique opportunity to connect face-to-face with potential employers, discover cutting-edge innovations, and learn more about the rapidly evolving landscape of data-driven technologies. Yet, attending these events can feel overwhelming: dozens of companies, queues of applicants, and only minutes to make a great first impression. In this detailed guide, we’ll walk you through strategies to prepare for AI career fairs, provide you with key questions to ask, highlight examples of relevant UK events, and reveal the critical follow-up tactics that will help you stand out from the crowd. By the end, you’ll be armed with the knowledge and confidence to land your dream role in the ever-growing world of Artificial Intelligence.

Common Pitfalls AI Job Seekers Face and How to Avoid Them

The global demand for Artificial Intelligence (AI) specialists continues to rise, with organisations across industries keen to implement machine learning, deep learning, and data-driven insights into their operations. Yet, as the market for AI professionals flourishes, so does the level of competition among candidates. Talented individuals who may otherwise be qualified often stumble on common pitfalls that can hinder their success in securing an AI-related role. These pitfalls can lie in their CV, interview approach, job search strategy, or even their understanding of what AI employers are looking for. This article aims to help job seekers in the UK’s AI sector—whether you’re fresh out of university, transitioning into AI from another field, or looking for a senior-level position—avoid the most common mistakes. We’ll discuss how to stand out in a crowded AI job market by improving your CV, acing interviews, and conducting an effective job search. Read on to discover the typical missteps AI professionals make when seeking employment and learn the strategies to avoid them.