Senior Staff Engineer (Machine Learning) - 45391

Turing
City of London
1 day ago
Create job alert

About Turing:

Based in San Francisco, California, Turing is the world’s leading research accelerator for frontier AI labs and a trusted partner for global enterprises deploying advanced AI systems. Turing supports customers in two ways: first, by accelerating frontier research with high-quality data, advanced training pipelines, plus top AI researchers who specialize in coding, reasoning, STEM, multilinguality, multimodality, and agents; and second, by applying that expertise to help enterprises transform AI from proof of concept into proprietary intelligence with systems that perform reliably, deliver measurable impact, and drive lasting results on the P&L


Role Overview:

Turing is seeking a hands-on Machine Learning Senior Staff Engineer to lead cross-functional teams building and deploying cutting-edge LLM and ML systems. In this role, you’ll drive the full lifecycle of AI development — from research and large-scale model training to production deployment — while mentoring top engineers and collaborating closely with research and infrastructure leaders.


You’ll combine technical depth in deep learning and MLOps with leadership in execution and strategy, ensuring that Turing’s AI initiatives deliver reliable, high-performance systems that translate research breakthroughs into measurable business impact.


This position is ideal for leaders who are still comfortable coding, optimizing large-scale training pipelines, building collab notebooks that break the models and navigating the intersection of research, engineering, and product delivery.


Roles & Responsibilities:

  • Lead and mentor a cross-functional team of ML engineers, data scientists, and MLOps professionals.
  • Oversee the full lifecycle of LLM and ML projects — from data collection to training, evaluation, and deployment.
  • Collaborate with Research, Product, and Infrastructure teams to define goals, milestones, and success metrics.
  • Provide technical direction on large-scale model training, fine-tuning, and distributed systems design.
  • Implement best practices in MLOps, model governance, experiment tracking, and CI/CD for ML.
  • Manage compute resources, budgets, and ensure compliance with data security and responsible AI standards.
  • Communicate progress, risks, and results to stakeholders and executives effectively.
  • Overlap of 6 hours with PST time zone is mandatory.


Required Skills & Qualifications:

  • Strong background in Machine Learning, NLP, and modern deep learning architectures (Transformers, LLMs).
  • Hands-on experience with frameworks such as PyTorch, TensorFlow, Hugging Face, or DeepSpeed
  • Hands-on experience in Docker for Production deployment.
  • Proven experience managing teams delivering ML/LLM models in production environments.
  • Knowledge of distributed training, GPU/TPU optimization, and cloud platforms (AWS, GCP, Azure).
  • Familiarity with MLOps tools like MLflow, Kubeflow, or Vertex AI for scalable ML pipelines.
  • Excellent leadership, communication, and cross-functional collaboration skills.
  • Bachelor’s or Master’s in Computer Science, Engineering, or related field (PhD preferred).


Nice to Have:

  • Experience building Agentic applications
  • Experience training or fine-tuning foundation models.
  • Contributions to open-source ML or LLM frameworks.
  • Understanding of Responsible AI, bias mitigation, and model interpretability.


Perks of Freelancing With Turing:

  • Work in a fully remote environment
  • Opportunity to work on cutting-edge AI projects with leading LLM companies


Offer Details:

  • Commitments Required: At least 4 hours per day and minimum 20 hours per week with overlap of 4 hours with PST
  • Employment type: Contractor assignment (no medical/paid leave)
  • Duration of contract: 2 months; [expected start date is next week]
  • Timezone : US PST ( 6 hours overlap required 12pm PST to 6pm PST)


Evaluation Process (approximately 120 mins):

  • Two rounds of interviews (60 min technical + 60 min technical & cultural discussion)


After applying, you will receive an email with a login link. Please use that link to access the portal and complete your profile.


Know amazing talent? Refer them at turing.com/referrals, and earn money from your network.


If you are interested in a software engineer role, please apply here.

Related Jobs

View all jobs

Senior Staff Engineer (Machine Learning) - 45391

Senior Staff Engineer (Machine Learning) – 45391

Staff Machine Learning Engineer

Senior Machine Learning Engineer

Senior LLM / Machine Learning Engineer – Clinical Platforms

Senior Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.