Senior Software Engineer, ML Ops

Ki
London
2 months ago
Applications closed

Related Jobs

View all jobs

Senior Software Engineer, Machine Learning

Senior Software Engineer, Machine Learning

Sr. Machine Learning Engineer Software Engineer(ClimateTech)

Senior Machine Learning Engineer

Senior Machine Learning Scientist (UK Remote)

Senior Machine Learning Scientist (UK Remote)

Who are we?


Look at the latest headlines and you will see something Ki insures. Think space shuttles, world tours, wind farms, and even footballers’ legs. Ki’s mission is simple. Digitally disrupt and revolutionise a 335-year-old market. Working with Google and UCL, Ki has created a platform that uses algorithms, machine learning and large language models to give insurance brokers quotes in seconds, rather than days. Ki is proudly the biggest global algorithmic insurance carrier. It is the fastest growing syndicate in the Lloyd's of London market, and the first ever to make $100m in profit in 3 years. Ki’s teams have varied backgrounds and work together in an agile, cross-functional way to build the very best experience for its customers. Ki has big ambitions but needs more excellent minds to challenge the status-quo and help it reach new horizons.


What’s the role?


Our broker platform is the core technology to Ki's success – allowing us to evolve underwriting intelligently and unlock massive scale.


We're a multi-disciplined team, bringing together expertise in software and data engineering, full stack development, platform operations, algorithm research, and data science. Our squads focus on delivering high-impact features – we favour a highly iterative, analytical approach.


Initially, you would be working as part of the core technology group in the model ops squad. The Model Ops squad are focused on enabling Ki to build and deploy best in market algorithmic underwriting models and graphs of models at scale. Sample products you might be involved in building include, developer tooling, microservice orchestration systems, ML model serving infrastructure, feature serving and storage infrastructure.


Principal Accountabilities:


  • Build robust and scalable software for business critical, web-based applications
  • Design, build, test, document and maintain API’s and integrations
  • Ensure quality control using industry standard techniques such as automated testing, pairing, and code review
  • Document technical design and analysis work
  • Assess current system architecture and identify opportunities for growth and improvement
  • Build mock-ups or prototypes to explore and troubleshoot new initiatives
  • Explore new ideas and emerging technologies, develop prototypes quickly
  • Uphold and advance the wider engineering team’s principles and ways of working
  • Serve as a domain expert for one or more of Ki’s core technologies
  • Mentor and coach colleagues in both engineering and business domain subjects


Required Skills and Experience:


  • Experience as a mid-senior level engineer working across a modern stack
  • Strong software engineering principles (SOLID, DRY, data modelling)
  • Professional experience with a server-side language, ideally Python
  • Comfortable working with cloud infrastructure, infrastructure as code, familiar with standard logging and monitoring tools used to investigate issues
  • Experience with continuous integration, or ideally, continuous delivery
  • Strong familiarity with build tools and version control tools (e.g. Git/Github)
  • Experience working in agile teams, following Scrum or Kanban, participating in regular ceremonies including stand-ups, planning, and retrospectives
  • Previous experience of software development in the financial markets, Fintech or Insurtech is preferable
  • Experience or interest in building developer tooling, platform engineering, and/or machine learning is desirable


Our culture


Inclusion & Diversity is at the heart of our business at Ki. We recognise that diversity in age, race, gender, ethnicity, sexual orientation, physical ability, thought and social background bring richness to our working environment. No matter who you are, where you’re from, how you think, or who you love, we believe you should be you.


You’ll get a highly competitive remuneration and benefits package. This is kept under constant review to make sure it stays relevant. We understand the power of saying thank you and take time to acknowledge and reward extraordinary effort by teams or individuals.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.

AI Jobs in the Public Sector: MOD, NHS & Gov Digital Service Opportunities

Artificial intelligence (AI) has rapidly evolved from a niche field of computer science into a transformative force reshaping industries across the globe. From healthcare to finance and from education to defence, AI-driven tools and techniques are revolutionising how we approach problems, improve efficiency, and make data-driven decisions. Nowhere is this transformation more apparent than in the United Kingdom’s public sector. Key government entities, including the Ministry of Defence (MOD), the National Health Service (NHS), and the Government Digital Service (GDS), are increasingly incorporating AI into their operations. Consequently, AI jobs within these bodies are growing both in number and strategic importance. In this comprehensive blog post, we will explore the landscape of AI jobs across the UK public sector, with a close look at the MOD, the NHS, and the Government Digital Service. We will delve into the reasons these organisations are investing heavily in AI, the types of roles available, the essential skills and qualifications required, as well as the salary ranges one might expect. Whether you are a new graduate keen to make a meaningful impact through your technical skills or a seasoned professional looking for your next career move, the public sector offers a wealth of opportunities in AI. By the end of this article, you will have a clearer understanding of why AI is so crucial to the public sector’s success, which roles are in demand, and how you can tailor your application to stand out in a competitive and rewarding job market.