Senior Software Engineer (Hiring Immediately)

Complexio
1 year ago
Applications closed

Related Jobs

View all jobs

Senior MLOPs Engineer

Senior Simulation Engineer (Data Science)

Lead Software Engineer (Machine Learning)

Senior Machine Learning Engineer, Gen AI

Senior Machine Learning Engineer

Machine Learning Engineer Python AWS

 Complexio is Foundational AI works to automate business activities by ingesting whole company data – both structured and unstructured – and making sense of it. Using proprietary models and algorithms Complexio forms a deep understanding of how humans are interacting and using it. Automation can then replicate and improve these actions independently.


Complexiois a joint venture betweenHafniaandSímbolo, in partnership withMarfin Management,C Transport Maritime,Trans Sea TransportandBW Epic Kosan.


About the job

As a Senior Software Engineer with broad expertise, you will be a vital part of our team, developing innovative applications that leverage AI capabilities to enhance user experiences and streamline communication. You will work alongside a talented team of Data Scientists, DevOps, Product Managers, Business Analysts experts and play a key role in designing and implementing specialised AI assistant technology.


You have


  • Excellent problem-solving and technical skills.
  • Strong communication and collaboration skills, with the ability to work in a team.
  • Interest and experience in working on early-stage software and a wide range of tasks.
  • Proven experience using technology and how it helped you build a lasting product.

Key Responsibilities


  • Collaborate with cross-functional teams to develop key features and applications, including product managers, designers, and other engineers.
  • Design, develop, and maintain both front-end and back-end components of web applications, ensuring a seamless user experience.
  • Benchmark, analyze, and optimize web applications for scalability, security, and responsiveness.
  • Troubleshoot and resolve software defects and issues, ensuring high software quality.
  • Participate in code reviews, documentation, and the development of coding standards.



Responsibilities


  • Preferred M.Sc or Ph.d degree in Computer Science or a related field.
  • 7+ years of experience in Software development
  • Work experience using both compiled languages (Rust, Ocaml, Golang, Java, C#) or dynamic languages (Javascript, Python, Ruby)
  • Experience building web applications or desktop applications technologiesFamiliarity with CI/CD principles and technologies, including experience with GitHub Actions or similar.
  • Experience working with Relational and NoSQL databases such as Postgres, Redis, Neo4j, Milviousor MongoDB, and a good understanding of data consistency tradeoffs.
  • Proven Knowledge of cloud platforms (e.g., AWS, Azure, or GCP).


A bonus


  • Experience with graph databases such as neo4js, pinecone or milvious or similar.
  • Experience building native desktop apps.
  • Experience with NLP libraries and frameworks, such as spaCy, or Transformers.
  • Familiarity with machine learning concepts and the ability to work with NLP datasets.



Qualifications

  • Bachelor's degree in Computer Science (or related field)
  • 3+ years of relevant work experience
  • Expertise in Object Oriented Design, Database Design, and XML Schema
  • Experience with Agile or Scrum software development methodologies
  • Ability to multi-task, organize, and prioritize work


(Remote must be within 3-5 hours of CET timezone)



Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.