Senior Software Engineer, Google Pixel Graphics

Google
London
11 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Lead Software Engineer (Machine Learning)

Senior Machine Learning Engineer (Platform) - Bristol

Senior Machine Learning Engineer (Platform) - Exeter

Senior MLOPs Engineer

Senior Simulation Engineer (Data Science)

Senior Software Engineer, Google Pixel Graphics

Location:London, UK

Experience Level:

Mid

Experience driving progress, solving problems, and mentoring more junior team members; deeper expertise and applied knowledge within relevant area.

Minimum Qualifications:

  • Bachelor’s degree or equivalent practical experience.
  • 5 years of experience with software development in one or more programming languages, and with data structures/algorithms.
  • 3 years of experience testing, maintaining, or launching software products, and 1 year of experience with software design and architecture.
  • 3 years of experience working with embedded operating systems.
  • Experience developing software applications using the C programming language.
  • Experience with object-oriented programming, templates, and the Standard Template Library (STL).

Preferred Qualifications:

  • Experience writing low-level graphics API code.
  • Experience in leading and coaching of people.
  • Experience developing graphics drivers with C coding language.

About the Job:

Google's software engineers develop the next-generation technologies that change how billions of users connect, explore, and interact with information and one another. Our products need to handle information at massive scale, and extend well beyond web search. We're looking for engineers who bring fresh ideas from all areas, including information retrieval, distributed computing, large-scale system design, networking and data storage, security, artificial intelligence, natural language processing, UI design and mobile; the list goes on and is growing every day. As a software engineer, you will work on a specific project critical to Google’s needs with opportunities to switch teams and projects as you and our fast-paced business grow and evolve. We need our engineers to be versatile, display leadership qualities and be enthusiastic to take on new problems across the full-stack as we continue to push technology forward.

Google's mission is to organize the world's information and make it universally accessible and useful. Our Devices & Services team combines the best of Google AI, Software, and Hardware to create radically helpful experiences for users. We research, design, and develop new technologies and hardware to make our user's interaction with computing faster, seamless, and more powerful. Whether finding new ways to capture and sense the world around us, advancing form factors, or improving interaction methods, the Devices & Services team is making people's lives better through technology.

Responsibilities:

  • Develop GPU graphics and compute technologies spanning the full GPU software stack with C coding language.
  • Seek general solutions to problems, minimizing application or device-specific workarounds to serve users of all Pixel devices, including in-market devices.
  • Help evaluate and bring-up devices and work with product and engineering teams to define the role and requirements of the GPU in future product designs.
  • Debug sophisticated user mode and kernel mode problems.
  • Advise Android and Pixel leadership on performance and feature opportunities in graphics software, and scope solutions with partner teams inside and outside Google.

Google is proud to be an equal opportunity and affirmative action employer. We are committed to building a workforce that is representative of the users we serve, creating a culture of belonging, and providing an equal employment opportunity regardless of race, creed, color, religion, gender, sexual orientation, gender identity/expression, national origin, disability, age, genetic information, veteran status, marital status, pregnancy or related condition (including breastfeeding), expecting or parents-to-be, criminal histories consistent with legal requirements, or any other basis protected by law.

Google is a global company and, in order to facilitate efficient collaboration and communication globally, English proficiency is a requirement for all roles unless stated otherwise in the job posting.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.