Machine Learning Evaluation Engineer

Marker
City of London
3 weeks ago
Applications closed

Related Jobs

View all jobs

ML Engineer - LLM RAG AWS Mlops - Bristol (Hybrid)

Senior Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer (0–3 Years Experience)

Machine Learning Engineer - LLM post-training/mid-training

AI Evaluation, Research Methods, Python, LLMObservability

Salary range

£60,000-£80,000 p.a. + equity, depending on experience (up to £100,000 forcandidates with exceptional relevant experience)

Apply

Email us at and tell us a little bit about yourselfand your interest in the future of writing, along with your CV or a link to your CV site.

What is Marker?

Marker is an AI-native Word Processor – a reimagining of Google Docs and Microsoft Word.

Join us in building the next generation of agentic AI assistants supporting serious writers in their work.

We are a small, ambitious company using cutting-edge technology to give everybody writing superpowers.

What you'll do at Marker

We are looking for someone with a couple of years experience in academia or industry who can help us bringrigour and insight to our AI systems through evaluation,research, and observability. You'll work directly with Ryan Bowman (CPO) to help us understand and improvehow our AI assists writers. Here are some examples of areas you will be working in:

  • Design and implement evaluation frameworks for complex, subjective AI outputs (like writing feedbackthat's meant to inspire rather than just correct)
  • Build flexible evaluation pipelines that can assess quality across multiple dimensions - from humanpreference to actual writing improvement
  • Research and prototype new evaluation methodologies for creative and subjective AI tasks
  • Collaborate with our engineering team to integrate evaluation insights into our development process
  • Help define what "quality" means for different AI outputs and create metrics that actually matter forour users
  • Work on challenging problems like: "How do we automatically evaluate whether an AI comment successfullyencourages thoughtful revision?"

What we can offer

  • A calm, human-friendly work environment among kind and experienced professionals
  • Fun, creative, novel, and interesting technical work at the intersection of AI research and productdevelopment
  • An opportunity to work with and learn about the latest advancements in AI evaluation and language models
  • Direct collaboration with leadership to shape how we understand and improve our AI systems
  • As much responsibility and growth opportunities as you want to take on

Are you a good fit for this role?

In order to be successful in this role, you will recognise yourself in the following:

  • You have experience with AI/ML evaluation methodologies and can speak the language of AI research
  • You've worked hands-on with language models and understand the challenges of evaluating subjective,creative outputs
  • You are a self-starter willing to work independently and at speed - we imagine a 2-week experimentcadence at most.
  • You are familiar with and have worked on related technical systems (evaluation pipelines, datacollection tools) but don't need to be a full-stack engineer. You won't be expected to build these alone!
  • You think critically about what metrics actually matter and aren't satisfied with vanity metrics
  • You're comfortable working with ambiguous problems where the "right answer" isn't obvious
  • You have some programming experience (Python preferred) and can work independently on technical projects
  • You're interested in the intersection of AI capabilities and human creativity

An exceptional candidate for this role would be able to demonstrate some of thefollowing:

  • Experience building evaluation systems for generative AI in production environments
  • Knowledge of TypeScript and ability to integrate with our existing systems
  • Background in human-computer interaction, computational creativity, or writing research
  • Experience with A/B testing, statistical analysis, and experimental design
  • Familiarity with modern AI observability and monitoring tools
  • Published research or deep interest in AI evaluation methodologies
  • Interest in writing (fiction, non-fiction, essays)

However, you are NOT expected to:

  • Be a senior software engineer - we're looking for someone who can build evaluation systems, notarchitect our entire backend
  • Have solved every evaluation problem before - this is cutting-edge work and we're figuring it outtogether
  • Be experienced with every library in our stack from day one - you'll work closely with Ryan and ourengineering team
  • Have a specific degree - we value practical experience and research ability over credentials

Our stack

You'll be working with the following technologies:

  • Our AI engine uses a range of models, including self-hosted and fine-tuned open source models, as wellas latest reasoning models from Anthropic and OpenAI
  • Evaluation and research tools built primarily in Python, with integration into our TypeScriptinfrastructure
  • Our agentic AI execution platform is written in TypeScript, hosted on Cloudflare Workers
  • Standard ML tooling: various evaluation frameworks, data analysis tools, and monitoring systems
  • Our text editor frontend is a web application built with React, TypeScript and ProseMirror

Apply now!

Interested? Email us at with your CV (or a link to your CV site).Tell us a little bit about yourself and why you'd like to work at Marker!

Please note that this role is currently only available based in ourLondon hub, and at this time we are not able to sponsor work visas in the UK.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.