Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior MLOps Engineer

algo1
London
1 week ago
Create job alert

About Us


We are an AI-native, VC-backed startup building a multimodal, proprietary foundation model with a profound understanding of retail, designed to hyper-personalise every shopper touchpoint. As we scale from research to production, we need robust infrastructure that makes our models reliable, reproducible, and observable at scale.


As a Senior MLOps Engineer, you will own the infrastructure and tooling that turns experimental models into dependable production systems. You will build the pipelines, monitoring, and deployment workflows that allow our Research Engineers to move fast without breaking things. If you want to operate at the intersection of machine learning and production systems engineering, this role is for you.


What You Will Do

  • Build and maintain CI/CD pipelines for model training, evaluation, and deployment across research, staging, and production environments.
  • Design and implement model registries, versioning systems, and experiment tracking to ensure full reproducibility of all model releases.
  • Deploy ML workflows using tools like Airflow or similar, managing dependencies from data ingestion through model deployment and serving.
  • Instrument comprehensive monitoring for model performance, data drift, prediction quality, and system health.
  • Manage infrastructure as code (Terraform, or similar) for compute resources, ensuring efficient scaling across training and inference workloads.
  • Collaborate with research and engineering teams to establish system SLOs/SLAs aligned with business objectives.
  • Build tooling and abstractions that make it easy for Research Engineers to deploy models reliably without needing deep infrastructure knowledge.
  • Ensure compliance, governance of all ML processes and workflows.


What We Look For

  • Experience building and operating ML infrastructure, ideally in production environments serving real users.
  • Strong proficiency in containerisation (Docker, Kubernetes) and orchestration of multi-stage ML workflows.
  • Hands-on experience with ML platforms and tools such as MLflow, Kubeflow, Vertex AI, SageMaker, or similar model management systems.
  • Practical knowledge of infrastructure as code, CI/CD best practices, and cloud platforms (AWS, GCP, or Azure).
  • Experience with relational databases and data processing and query engines (Spark, Trino, or similar).
  • Familiarity with monitoring, observability, and alerting systems for production ML (Prometheus, Grafana, Datadog, or equivalent).
  • Understanding of ML concepts. You don't need to train models, but you should speak the language of Research Engineers and understand their constraints.
  • A mindset that balances reliability with velocity: you care about reliability and reproducibility, but you also enable teams to ship fast.


Nice to Have

  • Experience delivering API services (FastAPI, SpringBoot or similar).
  • Experience with message brokers and real-time data and event processing (Kafka, Pulsar, or similar).


Why Join Us

  • You'll be part of a small, high-output team where intensity and focus are the norm.
  • You'll own the infrastructure that enables research to reach customers reliably and at scale.
  • You'll solve hard problems at the edge of ML systems: multi-modal models, on-device deployment, real-time inference, and retail-scale operations.
  • You'll work alongside people who care deeply, move quickly, and hold a high bar for excellence.

Related Jobs

View all jobs

Senior MLOps Engineer

Senior MLOps Engineer

Senior MLOps Engineer

Senior MLOps Engineer

Senior MLOps Engineer

Senior MLOps Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.