Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Machine Learning Engineer

Burns Sheehan
London
4 months ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer - Robotics

Senior Machine Learning Engineer/Computer Vision

Senior Machine Learning Engineer - Robotics

Senior Machine Learning Engineer (Spain)

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Lead/Senior Machine Learning Engineer


  • £110,000-£120,000
  • Bonus up to 10%
  • Shares so as they continue to grow you benefit to
  • Hybrid working - one day a week London (with door always open policy)


Are you a innovative, decisive Machine Learning Engineer looking for your next challenge?


This is your chance to join a marquee name within the fin-tech space looking to add their first Machine Learning Engineer to the business, this will require you to be a key individual contributor with the ability to make decisions yourself.


Within the role you will drive innovation by optimising and automating Pricing processes to enable faster, more accurate decision-making. Your work will focus on developing and maintaining tooling and frameworks that enhance the efficiency of our predictive models, reducing deployment times, increasing scalability, and improving model performance through regular updates and monitoring.

You will work closely with the Data Scientists and Product team to deliver scalable, production-grade ML systems.


This is a super exciting time to join the business who after a number of years of great success have hit profitability and now want to grow through strategic hiring.


Key Responsibilities


  • Build model lifecycle tooling (deployment, monitoring and alerting) for our predictive models (for example claims cost, conversion, retention, market models)
  • Maintain and improve the development environment (Kubeflow) used by the Data Scientists


  • Develop and maintain pricing analytics tools that enable faster impact assessments, reducing manual work
  • Collaborate with the technical pricing, street pricing and product teams to gather requirements and feedback on tooling and to build impactful technology
  • Communicate complex concepts to technical and non-technical stakeholders through clear storytelling



Required Skills


  • Education: Bachelor’s or Master’s degree in Statistics, Data Science, Computer Science or related field
  • Experience: Proven experience in ML model lifecycle management

● Core Competencies:

  • Model lifecycle: You’ve got hands-on experience with managing the ML model lifecycle, including both online and batch processes
  • Statistical Methodology: You have worked with GLMs and other machine learning algorithms and have in-depth knowledge of how they work
  • Python: You have built and deployed production-grade Python applications and you are familiar with data science libraries such as pandas and scikit-learn
  • Tooling & Environment: ○ DevOps: You have experience working with DevOps tooling, such as gitops, Kubernetes, CI/CD tools (we use buildkite) and Docker
  • Cloud: You have worked with cloud-based environments before (we use AWS)
  • SQL: You have a good grasp of SQL, particularly with cloud data warehouses like Snowflake
  • Version control: You are proficient with git


Soft Skills:

  • You are an excellent communicator, with an ability to translate non-technical requirements into clear, actionable pieces of work
  • You have proven your project management skills, with the ability to manage multiple priorities


Interested in finding out more? Click apply to be considered for shortlisting.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.