Senior Machine Learning Engineer

Burns Sheehan
Newcastle upon Tyne
2 months ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Scientist (Mexico, UK or Poland)

Lead Machine Learning Engineer

Research Engineer - Post-Training

Senior Machine Learning Engineer


  • £85,000-£110,000
  • Start-Up
  • Remote based with occasional meet ups in the UK
  • Chance to work with industry leading experts


We are currently partnered with a revolutionary start-up looking to bring in a Senior Machine Learning engineering to work with the co-founders and newly appointed CTO. As a tech-driven AI startup, we are at the forefront of cutting-edge technology, leveraging Machine Learning, Generative AI, and real-time data analysis to create impactful solutions. If you’re passionate about innovation and thrive on ambitious goals, you’ll feel right at home here.


The co founders believe that small teams achieve big things. They want to empower individuals create extraordinary outcomes. They are assembling a world-class AI and Engineering team where every contributor has the opportunity to leave a profound impact.


The business is currently in stealth mode although a sprinkle of information we can provide is that the business are building a next generation platform to help improve customer experiences on an unprecedented scale systems process billions of real-time data points daily, combining advanced ML models and large language models to deliver context-aware experiences worldwide. Through rapid model optimisation and continuous experimentation, the company drives engagement through intelligent recommendations and personalised content, delivering over 10%+ revenue growth for their clients & partners.


Key Responsibilities:


As a Machine Learning Engineer, you'll be instrumental in shaping our technical foundation and ML infrastructure. You'll work directly with the founding team to build and scale our AI-driven platform from the ground up.


  • Own the end-to-end ML infrastructure, from initial architecture decisions to production deployment, setting the technical standards for our growing team.
  • Take the lead in bridging research and production, turning innovative ML concepts into scalable, production-ready systems that process billions of real-time data points.
  • Design and implement robust ML pipelines that can handle our rapidly growing data volume while maintaining exceptional performance.
  • Build and optimize core model components with a focus on real-world impact, directly contributing to our mission of transforming gaming experiences.
  • Drives incremental improvements (across quality, ease of (re)use, performance) within the data, from PoC to production-grade systems that can scale reliably.
  • Establish best practices for code quality, testing, and documentation that will shape our engineering culture .
  • Create and maintain scalable data pipelines and APIs that can handle increasing complexity while maintaining reliability.
  • Works as part of a multi-disciplinary team, composed of data scientists, front-end and back-end engineers, product managers, and analysts.


As an early team member, you'll have a unique opportunity to influence our technical direction and growth. Some travel may be required as we build our distributed team.


Core Skills;


  • Strong track record of building and deploying ML systems in production, with hands-on experience in real-time, high-throughput environments.
  • Strong foundation in applied ML frameworks and data science tools and libraries.
  • Deep expertise in Python, with a focus on ML engineering best practices and production-grade code architecture.
  • Experience with modern cloud platforms (AWS/GCP/Azure) and MLOps practices, including containerization and CI/CD for ML workflows.
  • Practical exposure to modern cloud data platforms, with direct experience delivering data centric solutions for mission critical use cases; as well as driving innovation PoV style delivery and associated engineering/design principles.
  • Experience in distributed microservice architecture and REST API development. Hands-on experience with streaming architectures and real-time processing systems.
  • Track record of making architectural decisions that balance innovation with reliability.
  • Demonstrated ability to work independently and drive technical initiatives from concept to production.
  • Evidence of motivation to learn, and curiosity around modern approaches to ML engineering. Ability to discuss and debate relative merits and opportunities.


Desired

  • Experience with LLMs and modern NLP techniques. Building and optimizing RAG systems, working with embedding models and vector stores.
  • Background in scaling ML systems from prototype to production.
  • Previous experience in a fast paced start-up environment.
  • Understanding of ML monitoring and observability best practices.


This role isnt for a beginner, it is for someone who has the ability to solve problems, create solutions and really help a super exciting business become the next big rocket ship.


Apply with your most recent CV to be considered for shortlisting.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Ways AI Pros Stay Inspired: Boost Creativity with Side Projects, Hackathons & More

In the rapidly evolving world of Artificial Intelligence (AI), creativity and innovation are critical. AI professionals—whether data scientists, machine learning engineers, or research scientists—must constantly rejuvenate their thinking to solve complex challenges. But how exactly do these experts stay energised and creative in their work? The answer often lies in a combination of strategic habits, side projects, hackathons, Kaggle competitions, reading the latest research, and consciously stepping out of comfort zones. This article will explore why these activities are so valuable, as well as provide actionable tips for anyone looking to spark new ideas and enrich their AI career. Below, we’ll delve into tried-and-tested strategies that AI pros employ to drive innovation, foster creativity, and maintain an inspired outlook in an industry that can be both exhilarating and daunting. Whether you’re just starting your AI journey or you’re an experienced professional aiming to sharpen your skills, these insights will help you break out of ruts, discover fresh perspectives, and bring your boldest ideas to life.

Top 10 AI Career Myths Debunked: Key Facts for Aspiring Professionals

Artificial Intelligence (AI) is one of the most dynamic and rapidly growing sectors in technology today. The lure of AI-related roles continues to draw a diverse range of job seekers—from seasoned software engineers to recent graduates in fields such as mathematics, physics, or data science. Yet, despite AI’s growing prominence and accessibility, there remains a dizzying array of myths surrounding careers in this field. From ideas about requiring near-superhuman technical prowess to assumptions that machines themselves will replace these jobs, the stories we hear sometimes do more harm than good. In reality, the AI job market offers far more opportunities than the alarmist headlines and misconceptions might suggest. Here at ArtificialIntelligenceJobs.co.uk, we witness firsthand the myriad roles, backgrounds, and success stories that drive the industry forward. In this blog post, we aim to separate fact from fiction—taking the most pervasive myths about AI careers and debunking them with clear, evidence-based insights. Whether you are an established professional considering a career pivot into data science, or a student uncertain about whether AI is the right path, this article will help you gain a realistic perspective on what AI careers entail. Let’s uncover the truth behind the most common myths and discover the actual opportunities and realities you can expect in this vibrant sector.

Global vs. Local: Comparing the UK AI Job Market to International Landscapes

How to navigate salaries, opportunities, and work culture in AI across the UK, the US, Europe, and Asia Artificial Intelligence (AI) has evolved from a niche field of research to an integral component of modern industries—powering everything from chatbots and driverless cars to sophisticated data analytics in finance and healthcare. The job market for AI professionals is consequently booming, with thousands of new positions posted each month worldwide. In this blog post, we will explore how the UK’s AI job market compares to that of the United States, Europe, and Asia, delving into differences in job demand, salaries, and workplace culture. Additionally, we will provide insights for candidates considering remote or international opportunities. Whether you are a freshly qualified graduate in data science, an experienced machine learning engineer, or a professional from a parallel domain looking to transition into AI, understanding the global vs. local landscape can help you make an informed decision about your career trajectory. As the demand for artificial intelligence skills grows—and borders become more porous with hybrid and remote work—the possibilities for ambitious job-seekers are expanding exponentially. This article will offer a comprehensive look at the various regional markets, exploring how the UK fares in comparison to other major AI hubs. We’ll also suggest factors to consider when choosing where in the world to work, whether physically or remotely. By the end, you’ll have a clearer picture of the AI employment landscape, and you’ll be better prepared to carve out your own path.